全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

Using an Automatic Resistivity Profiler Soil Sensor On-The-Go in Precision Viticulture

DOI: 10.3390/s130101121

Keywords: soil spatial variability, electrical resistivity, vineyard variability

Full-Text   Cite this paper   Add to My Lib

Abstract:

Spatial information on vineyard soil properties can be useful in precision viticulture. In this paper a combination of high resolution soil spatial information of soil electrical resistivity (ER) and ancillary topographic attributes, such as elevation and slope, were integrated to assess the spatial variability patterns of vegetative growth and yield of a commercial vineyard (Vitis vinifera L. cv. Tempranillo) located in the wine-producing region of La Rioja, Spain. High resolution continuous geoelectrical mapping was accomplished by an Automatic Resistivity Profiler (ARP) on-the-go sensor with an on-board GPS system; rolling electrodes enabled ER to be measured for a depth of investigation approximately up to 0.5, 1 and 2 m. Regression analysis and cluster analysis algorithm were used to jointly process soil resistivity data, landscape attributes and grapevine variables. ER showed a structured variability that matched well with trunk circumference spatial pattern and yield. Based on resistivity and a simple terrain attribute uniform management units were delineated. Once a spatial relationship to target variables is found, the integration of point measurement with continuous soil resistivity mapping is a useful technique to identify within-plots areas of vineyard with similar status.

References

[1]  Dry, P.; Coombe, B. Viticulture; Winetitles: Adelaide, Australia, 2004; Volume 1.
[2]  Proffit, T.; Bramley, R.G.V.; Lamb, D.; Winter, E. Precision Viticulture. A New Era in Vineyard Management and Wine Production; Winetitles: Adelaide, Australia, 2006.
[3]  Bramley, R.G.V. Precision Viticulture: Managing vineyard variability for improved quality outcomes. In Understanding and Managing Wine Quality and Safety; Reynolds, A.G., Ed.; Woodhead Publishing: Cambridge, UK, 2010; pp. 445–480.
[4]  Lesch, S.M. Sensor-directed response surface sampling designs for characterizing spatial variation in soil properties. Comput. Electr. Agric. 2005, 46, 153–179.
[5]  Van Leeuwen, C. Terroir: The effect of the physical environment on the vine growth, grape ripening and wine sensory attributes. In Managing Wine Quality; Reynolds, A.G., Ed.; Woodhead Publishing: Cambridge, UK, 2010; Volume 1, pp. 273–315.
[6]  Taylor, J.; Tisseyre, B.; Praat, J. Bottling Good Information: Mixing Tradition and Technology in vineyards. Proceedings of FRUTIC 05: Information and Technology for Sustainable Fruit and Vegetable Production, Montpellier, France, 12–16 September 2005; pp. 12–16.
[7]  Tardaguila, J.; Baluja, J.; Arpon, L.; Balda, P.; Oliveira, M.T. Variations of soil properties affect the vegetative growth and yield components of Tempranillo grapevines. Prec. Agric. 2011, 12, 762–773.
[8]  Baluja, J.; Diago, M.P.; Goovaerts, P.; Tardaguila, J. Assessment of the spatial variability of grape anthocyanins using a fluorescence sensor. Relationships with vine vigour and yield. Prec. Agric. 2012, 13, 457–472.
[9]  Baluja, J.; Diago, M.P.; Goovaerts, P.; Tardaguila, J. Spatio-temporal dynamics of grape anthocyanin accumulation in a Tempranillo vineyard monitored by proximal sensing. Aust. J. Grape Wine Res. 2012, 18, 173–182.
[10]  Bramley, R.G.V.; Ouzman, J.; Boss, P.K. Variation in vine vigour, grape yield and vineyard soils and topography as indicators of variation in the chemical composition of grapes, wine and wine sensory attributes. Aust. J. Grape Wine Res. 2011, 17, 217–229.
[11]  Kerry, R.; Oliver, M.A. Variograms of Ancillary Data to Aid Sampling for Soil Surveys. Prec. Agric. 2003, 4, 261–278.
[12]  Corwin, D.L.; Lesch, S.M.; Shouse, P.J.; Soppe, R.; Ayars, J.E. Identifying Soil Properties that Influence Cotton Yield Using Soil Sampling Directed by Apparent Soil Electrical Conductivity. Agron. J. 2003, 95, 352–364.
[13]  Samouelian, A.; Cousin, I.; Tabbagh, A.; Bruand, A.; ; Richard, G. Electrical resistivity survey in soil science: A review. Soil Tillage Res. 2005, 83, 173–193.
[14]  Besson, A.; Cousin, I.; Bourennane, H.; Nicoullaud, B.; Pasquier, C.; Richard, G.; Dorigny, A.; King, D. The spatial and temporal organization of soil water at the field scale as described by electrical resistivity measurements. Eur. J. Soil Sci. 2010, 61, 120–132.
[15]  Corwin, D.L.; Lesch, S.M.; Oster, J.D.; Kaffka, S.R. Monitoring management-induced spatio–Temporal changes in soil quality through soil sampling directed by apparent electrical conductivity. Geoderma 2006, 131, 369–387.
[16]  Besson, A.; Cousin, I.; Samou?lian, A.; Boizard, H.; Richard, G. Structural heterogeneity of the soil tilled layer as characterized by 2D electrical resistivity surveying. Soil Tillage Res. 2004, 79, 239–249.
[17]  Basso, B.; Amato, M.; Bitella, G.; Rossi, R.; Kravchenko, A.; Sartori, L.; Carvalho, M.L.; Gomes, J. Two Dimensional Spatial and Temporal Variation of Soil Physical Properties in Tillage Systems Using Electrical Resistivity Tomography. Agron. J. 2010, 102, 440–449.
[18]  Sudduth, K.; Kitchen, N.R.; Wiebold, W.J.; Batchelor, W.D.; Bollero, G.; Bullock, D.G.; Clay, D.E.; Palm, H.L.; Pierce, F.J.; Schuler, R.T.; Thelen, K.D. Relating apparent electrical conductivity to soil properties across the north-central USA. Comput. Electr. Agric. 2005, 46, 263–283.
[19]  Kitchen, N.; Sudduth, K.; Myers, D.; Drummond, S.; Hong, S. Delineating productivity zones on claypan soil fields using apparent soil electrical conductivity. Comput. Electr. Agric. 2005, 46, 285–308.
[20]  Moral, F.J.; Terrón, J.M.; Silva, J.R.M. Delineation of management zones using mobile measurements of soil apparent electrical conductivity and multivariate geostatistical techniques. Soil Tillage Res. 2010, 106, 335–343.
[21]  Morari, F.; Castrignanò, A.; Pagliarin, C. Application of multivariate geostatistics in delineating management zones within a gravelly vineyard using geo-electrical sensors. Comput. Electr. Agric. 2009, 68, 97–107.
[22]  Sudduth, K.A.; Kitchen, N.R.; Bollero, G.A.; Bullock, D.G.; Wiebold, W.J. Comparison of Electromagnetic Induction and Direct Sensing of Soil Electrical Conductivity. Agron. J. 2003, 482, 472–482.
[23]  Dabas, M. Fundamentals of the ARP? system. Comparison with the EM approach Application to large scale arch. sites. In Seeing the Unseen. Geophysics and Landscape Archaeology, 1st ed.; Campana, S., Piro, S., Eds.; Taylor & Francis: London, UK, 2008; pp. 105–129.
[24]  Lamb, D.W.; Mitchell, A.; Hyde, G. Evaluating the Impact of VSP Vine Trellising Comprising Steel Posts on EM-38 Apparent Conductivity Surveys. Austr. J. Grape Wine Res. 2005, 11, 24–32.
[25]  André, F.; van Leeuwen, C.; Saussez, S.; Van Durmen, R.; Bogaert, P.; Moghadas, D.; de Rességuier, L.; Delvaux, B.; Vereecken, H.; Lambot, S. High-resolution imaging of a vineyard in south of France using ground-penetrating radar, electromagnetic induction and electrical resistivity tomography. J. Appl. Geophys. 2012, 78, 113–122.
[26]  Dabas, M.; Cassassolles, X. Characterization of Soil Variability and Its Application to the Management of Vineyard (Arp System). 2002. Avaliable online: http://www.liendelavigne.org/ANG/RapportsANG/11–2002ANG/LDV_021122_Dabas_en.pdf (accessed on 14 January 2012).
[27]  Soil Survey Staff. In Keys to Soil Taxonomy, 8th ed. ed.; Soil Conservation Service/USDA/Pocahontas Press: Blacksburg, VA, USA, 2006.
[28]  Arce, G.R. Nonlinear Signal Processing: A Statistical Approach; Wiley: Hoboken, NJ, USA, 2005.
[29]  Fridgen, J.J.; Kitchen, N.R.; Sudduth, K.A.; Drummond, S.T.; Wiebold, W.J.; Fraisse, C.W. Management Zone Analyst (MZA): Software for subfield management zone delineation. Agron. J. 2004, 96, 100–108.
[30]  Jaynes, D.B.; Colvin, T.S.; Kaspar, T.C. Identifying potential soybean management zones from multi-year yield data. Comput. Electr. Agric. 2005, 46, 309–327.
[31]  Kitchen, N.R.; Drummond, S.T.; Lund, E.D.; Sudduth, K.A.; Buchleiter, G.W. Soil electrical conductivity and topography related to yield for three contrasting soil–crop systems. Agron. J. 2003, 95, 483–495.
[32]  Kaspar, T.C.; Colvin, T.S.; Jaynes, D.B.; Karlen, D.L.; James, D.E.; Meek, D.W.; Pulido, D.; Butler, H. Relationship Between Six Years of Corn Yields and Terrain Attributes. Prec. Agric. 2003, 4, 87–101.
[33]  Fraisse, C.W.; Sudduth, K.A.; Kitchen, N.R. Calibration of the Ceres-Maize model for simulating site-specific crop development and yield on claypan soils. Appl. Eng. Agric. 2001, 17, 547–556.
[34]  Boydell, B.; McBratney, A.B. Identifying Potential Within-Field Management Zones from Cotton-Yield Estimates. Prec. Agric. 2002, 3, 9–23.
[35]  Acevedo-Opazo, C.; Tisseyre, B.; Guillaume, S.; Ojeda, H. The potential of high spatial resolution information to define within-vineyard zones related to vine water status. Prec. Agric. 2008, 9, 285–302.
[36]  Bramley, R.G.V.; Hamilton, R.P. Understanding variability in winegrape production systems Within vineyard variation in yield over several vintages. Austr. J. Grape Wine Res. 2004, 10, 32–45.
[37]  Beresnev, I.A.; Hruby, C.E.; Davis, C.A. The use of multi-electrode resistivity imaging in gravel prospecting. J. Appl. Geophys. 2002, 49, 245–254.
[38]  Zenone, T.; Morelli, G.; Teobaldelli, M.; Fischanger, F.; Matteucci, M.; Sordini, M.; Armani, A.; Ferrè, C.; Chiti, T.; Seufert, G. Preliminary use of ground-penetrating radar and electrical resistivity tomography to study tree roots in pine forests and poplar plantations. Funct. Plant Biol. 2007, 35, 1047–1058.
[39]  Amato, M.; Bitella, G.; Rossi, R.; Gómez, J.A.; Lovelli, S.; Gomes, J.J.F. Multi-electrode 3D resistivity imaging of alfalfa root zone. Eur. J. Agron. 2009, 31, 213–222.
[40]  Rey, E.; Jongmans, D.; Gotteland, P.; Garambois, S. Characterisation of soils with stony inclusions using geoelectricalmeasurements. J. Appl. Geophys. 2006, 58, 188–201.
[41]  Rossi, R.; Amato, M.; Bitella, G.; Bochicchio, R.; Ferreira Gomes, J.J.; Lovelli, S.; Martorella, E.; Favale, P. Electrical resistivity tomography as a non-destructive method for mapping root biomass in an orchard. Eur. J. Soil Sci. 2010, 62, 206–215.
[42]  Amato, M.; Basso, B.; Celano, G.; Bitella, G.; Morelli, G.; Rossi, R. In situ detection of tree root distribution and biomass by multielectrode resistivity imaging. Tree Physiol. 2008, 28, 1441–1448.
[43]  Lesch, S.M.; Corwin, D.L.; Robinson, D.A. Apparent soil electrical conductivity mapping as an agricultural management tool in arid zone soils. Comput. Electr. Agric. 2005, 46, 351–378.
[44]  Trought, M.C.T.; Dixon, R.; Mills, T.; Greven, M.; Agnew, R.; Mauk, J.L.; Praat, J.P. The impact of differences in soil texture within a vineyard on vine vigour, vine earliness and juice composition. J. Int. Sci. Vigne Vin. 2008, 42, 67–72.
[45]  Li, Y.; Shi, Z.; Wu, C.F.; Li, H.; Li, F. Determination of potential management zones from soil electrical conductivity, yield and crop data. J. Zhejiang Univ. 2008, 9, 68–76.
[46]  Fraisse, C.W.; Sudduth, K.A.; Kitchen, N.R. Delineation of site-specific management zones by unsupervised classification of topographic attributes and soil electrical conductivity. Trans. Am. Soc. Agric. Eng. 2001, 44, 155–166.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133