全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

A New Curb Detection Method for Unmanned Ground Vehicles Using 2D Sequential Laser Data

DOI: 10.3390/s130101102

Keywords: curb detection, laser range finder, mapping, dynamic environment

Full-Text   Cite this paper   Add to My Lib

Abstract:

Curb detection is an important research topic in environment perception, which is an essential part of unmanned ground vehicle (UGV) operations. In this paper, a new curb detection method using a 2D laser range finder in a semi-structured environment is presented. In the proposed method, firstly, a local Digital Elevation Map (DEM) is built using 2D sequential laser rangefinder data and vehicle state data in a dynamic environment and a probabilistic moving object deletion approach is proposed to cope with the effect of moving objects. Secondly, the curb candidate points are extracted based on the moving direction of the vehicle in the local DEM. Finally, the straight and curved curbs are detected by the Hough transform and the multi-model RANSAC algorithm, respectively. The proposed method can detect the curbs robustly in both static and typical dynamic environments. The proposed method has been verified in real vehicle experiments.

References

[1]  Lane Departure Warning System. Available online: http://en.wikipedia.org/wiki/Lane_departure_warning_system (accessed on 12 December 2012).
[2]  Takata LDW System. Available online: http://www.safetrak.takata.com/ (accessed on 12 December 2012).
[3]  Kodagoda, K.R.S.; Wijesoma, W.S.; Balasuriya, A.P. Road Curb and Intersection Detection Using a 2D LMS. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne, Switzerland, 30 September–4 October 2002; pp. 19–24.
[4]  Wijesoma, W.S.; Kodagoda, K.R.S.; Balasuriya, A.P. Road-boundary detection and tracking using ladar sensing. IEEE Trans. Robot. Autom. 2004, 20, 456–464.
[5]  Kodagoda, K.R.S.; Wijesoma, W.S.; Balasuriya, A.P. CuTE: Curb tracking and estimation. IEEE Trans. Contr. Syst. Technol. 2006, 14, 951–957.
[6]  Smadja, L.; Ninot, J.; Gavrilovic, T. Road extraction and environment interpretation from Lidar sensors. IAPRS 2010, 38, 281–286.
[7]  Yuan, X.; Zhao, C.X.; Zhang, H.F. Road detection and corner extraction using high definition Lidar. Inform. Technol. J. 2010, 9, 1022–1030.
[8]  Zhang, W. LIDAR-Based Road and Road-Edge Detection. Proceedings of the IEEE Intelligent Vehicles Symposium, San Diego, CA, USA, 21–24 June 2010; pp. 845–848.
[9]  Oniga, F.; Nedevschi, S.; Meinecke, M.M. Curb Detection Based on a Multi-Frame Persistence Map for Urban Driving Scenarios. Proceedings of the 11th International IEEE Conference on Intelligent Transportation Systems, Beijing, China, 12–15 October 2008; pp. 67–72.
[10]  Siegemund, J.; Pfeiffer, D.; Franke, U.; Forstner, W. Curb Reconstruction Using Conditional Random Fields. Proceedings of the IEEE Intelligent Vehicles Symposium, San Diego, CA, USA, 21–24 June 2010; pp. 203–210.
[11]  Oniga, F.; Nedevschi, S. Polynomial Curb Detection Based on Dense Stereovision for Driving Assistance. Proceedings of the 13th International IEEE Conference on Intelligent Transportation Systems (ITSC), Madeira Island, Portugal, 19–22 September 2010; pp. 1110–1115.
[12]  Gallo, O.; Manduchi, R.; Rafii, A. Robust Curb and Ramp Detection for Safe Parking Using the Canesta TOF Camera. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Anchorage, AK, USA, 23–28 June 2008; pp. 1–8.
[13]  Gallo, O.; Manduchi, R.; Rafii, A. CC-RANSAC: Fitting planes in the presence of multiple surfaces in range data. Pattern Recog. Lett. 2011, 32, 403–410.
[14]  Aufrere, R.; Mertz, C.; Thorpe, C. Multiple Sensor Fusion for Detecting Location of Curbs, Walls, and Barriers. Proceedings of the IEEE Intelligent Vehicles Symposium, Columbus, OH, USA, 9–11 June 2003; pp. 126–131.
[15]  Burgard, W.; Hebert, M. World modeling. In Springer Handbook of Robotics; Siciliano, B., Khatib, O., Eds.; Springer: Heidelberg, Germany, 2008; pp. 853–869.
[16]  Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 1981, 24, 381–395.
[17]  Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision, 2nd ed. ed.; Cambridge University Press: New York, NY, USA, 2004; p. 119.
[18]  Telegrams for Configuring and Operating the LMS2xx Laser Measurement Systems; SICK: Reute, Germany, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133