全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

Investigation into Mass Loading Sensitivity of Sezawa Wave Mode-Based Surface Acoustic Wave Sensors

DOI: 10.3390/s130202164

Keywords: surface acoustic wave devices, Sezawa wave mode, mass loading effect, sensors, FEM simulation

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this work mass loading sensitivity of a Sezawa wave mode based surface acoustic wave (SAW) device is investigated through finite element method (FEM) simulation and the prospects of these devices to function as highly sensitive SAW sensors is reported. A ZnO/Si layered SAW resonator is considered for the simulation study. Initially the occurrence of Sezawa wave mode and displacement amplitude of the Rayleigh and Sezawa wave mode is studied for lower ZnO film thickness. Further, a thin film made of an arbitrary material is coated over the ZnO surface and the resonance frequency shift caused by mass loading of the film is estimated. It was observed that Sezawa wave mode shows significant sensitivity to change in mass loading and has higher sensitivity (eight times higher) than Rayleigh wave mode for the same device configuration. Further, the mass loading sensitivity was observed to be greater for a low ZnO film thickness to wavelength ratio. Accordingly, highly sensitive SAW sensors can be developed by coating a sensing medium over a layered SAW device and operating at Sezawa mode resonance frequency. The sensitivity can be increased by tuning the ZnO film thickness to wavelength ratio.

References

[1]  Thompson, M.; Stone, D.C. Surface-Launched Acoustic Wave Sensors: Chemical Sensing and Thin-Film Characterization. In Chemical Analysis; Winefordner, J.D., Ed.; John Wiley & Sons Inc.: New York, NY, USA, 1997; Volume 144, pp. 60–63.
[2]  Nomura, T.; Takebayashi, R.; Saitoh, A. Chemical sensor based on surface acoustic wave resonator using Langmuir-Blodgett film. Trans. Ultrason. Eng. 1998, 45, 1261–1265.
[3]  Ramakrishnan, N.; Palathinkal, R.P.; Nemade, H.B. Mass loading effect of high aspect ratio structures grown over surface acoustic wave resonators. Sens. Lett. 2010, 8, 253–257.
[4]  Tsai, H.-H.; Wu, D.H.; Chiang, T.-L.; Chen, H.H. Robust design of saw gas sensors by taguchi dynamic method. Sensors 2009, 9, 1394–1408.
[5]  Kshetrimayum, R.; Yadava, R.D.S.; Tandon, R.P. Mass sensitivity analysis and designing of surface acoustic wave resonators for chemical sensors. Meas. Sci. Technol. 2009, 20, doi:10.1088/0957-0233/20/5/055201.
[6]  Fan, L.; Ge, H.; Zhang, S.; Zhang, H.; Zhu, J. Optimization of sensitivity induced by surface conductivity and sorbed mass in surface acoustic wave gas sensors. Sens. Actuators B 2012, 161, 114–123.
[7]  Bhasker, R.V.; Nimal, A.T.; Parmar, Y.; Sharma, M.U.; Gupta, V. Investigations on the origin of mass and elastic loading in the time varying distinct response of ZnO SAW ammonia sensor. Sens. Actuators B 2012.
[8]  Ramakrishnan, N.; Nemade, H.B.; Palathinkal, R.P. Mass loading in coupled resonators consisting of SU-8 micropillars fabricated over SAW devices. IEEE Sens. J. 2011, 11, 430–431.
[9]  Ramakrishnan, N.; Nemade, H.B.; Palathinkal, R.P. Resonant frequency characteristics of a SAW device attached to resonating micropillars. Sensors 2012, 12, 3789–3797.
[10]  Zadeh, K.K.; Trinchi, A.; Wlodarski, W.; Holland, A. A novel love-mode device based on a ZnO/ST-cut quartz crystal structure for sensing applications. Sens. Actuators A 2002, 100, 135–143.
[11]  Krishnamoorthy, S.; Iliadis, A.A.; Bei, T.; Chrousos, G.P. An interleukin-6 ZnO/SiO(2)/Si surface acoustic wave biosensor. Biosens. Bioelectron. 2008, 24, 313–318.
[12]  Du, X.Y.; Fu, Y.Q.; Tan, S.C.; Luo, J.K.; Flewitt, A.J.; Milne, W.I.; Lee, D.S.; Park, N.M.; Park, J.; Choi, Y.J.; Kim, S.H.; Maeng, S. ZnO film thickness effect on surface acoustic wave modes and acoustic streaming. Appl. Phys. Lett. 2008, 93, 094105:1–094105:3.
[13]  Prechtel, V.U.; Ziegler, V.; Kolodzik, S.; Plehn, B.; Downar, H.; Haering, J.; Kunze, R.; Martin, G.; Schmidt, H.; Weihnacht, M. Diamond-Based SAW Oscillator at 1 GHz. Proceeding of Ultrasonics Symposium, Munchen, Germany, 23–27 August 2004. Volume 1; pp. 199–202.
[14]  Weber, A.H.; Weiss, G.; Hunklinger, S. Comparison of Rayleigh and Sezawa Wave Modes in ZnO-SiO2-Si Structures. Proceeding of Ultrasonics Symposium, Heidelberg, Germany, 8–11 December 1991; pp. 363–366.
[15]  Talbi, A.; Sarry, F.; Le, B.L.; Elmazria, O.; Alnot, P. Sezawa mode SAW pressure sensors based on ZnO/Si structure. Trans. Ultrason. Eng. 2004, 51, 1421–1426.
[16]  Chung, G.-S.; Phan, D.-T. Finite element modeling of surface acoustic waves in piezoelectric thin films. J. Korean Phys. Soc. 2010, 57, 446–450.
[17]  COMSOL. Multiphysics Version 4.2a Documentation; COMSOL AB: Stockholm, Sweden, 2011; Volume 3.
[18]  Lerch, R. Simulation of piezoelectric devices by two- and three-dimensional finite elements. Trans. Ultrason. Eng. 1990, 37, 233–247.
[19]  Carlotti, G.; Socino, G.; Petri, A.; Verona, E. Acoustic investigation of the elastic properties of ZnO films. Appl. Phys. Lett. 1987, 51, 1889–1891.
[20]  Ashkenov, N.; Mbenkum, B.N.; Bundesmann, C.; Riede, V.; Lorenz, M.; Spemann, D.; Kaidashev, E.M.; Kasic, A.; Schubert, M.; Grundmann, M.; et al. Infrared dielectric functions and phonon modes of high-quality ZnO films. J. Appl. Phys. 2003, 93, 126–133.
[21]  Campo, A.D.; Greiner, C. SU-8: A photoresist for high-aspect-ratio and 3D submicron lithography. J. Micromech. Microeng. 2007, 17, doi:10.1088/0960-1317/17/6/R01.
[22]  Ricco, A.J.; Martin, S.J.; Zipperian, T.E. Surface acoustic wave gas sensor based on film conductivity changes. Sens. Actuators 1985, 8, 319–333.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133