全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

Motion Mode Recognition and Step Detection Algorithms for Mobile Phone Users

DOI: 10.3390/s130201539

Keywords: pedestrian navigation, handheld MEMS, step detection, mobile phone, gait analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

Microelectromechanical Systems (MEMS) technology is playing a key role in the design of the new generation of smartphones. Thanks to their reduced size, reduced power consumption, MEMS sensors can be embedded in above mobile devices for increasing their functionalities. However, MEMS cannot allow accurate autonomous location without external updates, e.g., from GPS signals, since their signals are degraded by various errors. When these sensors are fixed on the user’s foot, the stance phases of the foot can easily be determined and periodic Zero velocity UPdaTes (ZUPTs) are performed to bound the position error. When the sensor is in the hand, the situation becomes much more complex. First of all, the hand motion can be decoupled from the general motion of the user. Second, the characteristics of the inertial signals can differ depending on the carrying modes. Therefore, algorithms for characterizing the gait cycle of a pedestrian using a handheld device have been developed. A classifier able to detect motion modes typical for mobile phone users has been designed and implemented. According to the detected motion mode, adaptive step detection algorithms are applied. Success of the step detection process is found to be higher than 97% in all motion modes.

References

[1]  Titterton, D.H.; Weston, J.L. Strapdown Inertial Navigation Technology, 2nd ed.; The Institution of Electrical Engineers: Stevenage, UK, 2004.
[2]  Beauregard, S. Omnidirectional Pedestrian Navigation for First Responder. Proceedings of the 4th Workshop on Positioning, Navigation and Communication, Hannover, Germany, 22 March 2007; pp. 33–36.
[3]  Godha, S.; Lachapelle, G.; Cannon, M.E. Integrated GPS/INS System for Pedestrian Navigation in a Signal Degraded Environment. Proceedings of the 19th International Technical Meetings of the Satellite Division of the Institute of Navigation, Forth Worth, TX, USA, 26– 29 September 2006; pp. 2151–2164.
[4]  Foxlin, E. Pedestrian tracking with shoe-mounted inertial sensors. IEEE Comput. Graph. Appl. 2005, 25, 38–46.
[5]  Skog, I.; H?ndel, P.; Nilsson, J.O.; Rantakokko, J. Zero-velocity detection—An algorithm evaluation. IEEE Trans. Biomed. Eng. 2010, 57, 2657–2665.
[6]  Bancroft, J.B.; Afzal, M.H.; Lachapelle, G. High Performance GNSS Augmented Pedestrian Navigation in Signal Degraded Environments. Proceedings of the International Global Navigation Satellite Systems Society (IGNSS) Symposium, Sydney, Australia, 15–17 November 2011.
[7]  Alvarez, D.; Gonzalez, R.C.; Lopez, A.; Alvarez, J.C. Comparison of Step Length Estimators from Wearable Accelerometer Devices. Proceedings of 28th Annual International Conference on IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August– 3 September 2006; pp. 5964–5967.
[8]  Jahn, J.; Batzer, U.; Seitz, J.; Patino-Studencka, L.; Boronat, J.G. Comparison and Evaluation of Acceleration Based Step Length Estimators for Handheld Devices. Proceedings of IEEE 2nd Conference on Indoor Positioning and Indoor Navigation, Zurich, Switzerland, 15– 17 September 2010; pp. 1–6.
[9]  Kourogi, M.; Ishikawa, T.; Kurata, T. A Method of Pedestrian Dead Reckoning Using Action Recognition. Proceeding of PLANS 2010, Indian Wells, CA, USA, 4–6 May 2010; pp. 85–89.
[10]  Kourogi, M.; Kurata, T. Personal Positioning Based on Walking Locomotion Analysis with Self-Contained Sensors and a Wearable Camera. Proceedings of the Second IEEE and ACM International Symposium, 7– 10 October 2003; pp. 103–112.
[11]  Steinhoff, U.; Schiele, B. Dead Reckoning from the Pocket—An Experimental Study. Proceedings of 2010 IEEE International Conference on Pervasive Computing and Communications (PerCom), Mannheim, Germany, 29 March– 2 April 2010; pp. 162–170.
[12]  Bylemans, M.; Weyn, M.; Klepal, M. Mobile Phone-Based Displacement Estimation for Opportunistic Localisation Systems. Proceedings of the 2009 Third International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies, Sliema, Malta, 11–16 October 2009; pp. 113–118.
[13]  Gusenbauer, D.; Isert, C.; Krosche, J. Self-Contained Indoor Positioning on Off-The-Shelf Mobile Devices. Proceedings of IEEE 2nd Conference on Indoor Positioning and Indoor Navigation, Zurich, Switzerland, 15– 17 September 2010; pp. 15–17.
[14]  Hide, C.; Moore, T.; Botterill, T. Low cost vision aided IMU for pedestrian navigation. J. Glob. Position. Syst. 2011, 10, 3–10.
[15]  Ruotsalainen, L.; Bancroft, J.; Kuusniemi, H.; Lachapelle, G.; Chen, R. Utilizing Visual Measurements for Obtaining Robust Attitude and Positioning for Pedestrians. Proceedings of GNSS12, Nashville, TN, USA, 18–21 September 2012; pp. 2454–2461.
[16]  Altun, K.; Barshan, B. Pedestrian dead reckoning employing simultaneous activity recognition cues. Measur. Sci. Technol. 2012, 23, 1–20.
[17]  Tun?el, O.; Altun, K.; Barshan, B. Classifying human leg motions with uniaxial piezoelectric gyroscopes. Sensors 2009, 9, 8508–8546.
[18]  Zhu, C.; Sheng, W. Recognizing Human Daily Activity Using a Single Inertial Sensor. Proceedings of the 8th World Congress on Intelligent Control and Automation (WCICA), Stillwater, OK, USA, 7–9 July 2010; pp. 282–287.
[19]  Olivares, A.; Ramírez, J.; Górriz, J.M.; Olivares, G.; Damas, M. Detection of inactivity periods in human body motion using inertial sensors: A comparative study. Sensors 2012, 12, 5791–5814.
[20]  Mathie, M.J.; Coster, A.C.F.; Lovell, N.H.; Celler, B.G. Accelerometry: Providing an integrated, practical method for longterm, ambulatory monitoring of human movement. Physiol. Measur. 2004, 25, 1–20.
[21]  Bancroft, J.; Garrett, D.; Lachapelle, G. Activity and Environment Classification Using Foot Mounted Navigation Sensors. Proceedings of International Conference on Indoor Positioning and Indoor Navigation, Sydney, Australia, 13–15 November 2012.
[22]  Susi, M.; Borio, D.; Lachapelle, G. Accelerometer Signal Features and Classification Algorithms for Positioning Applications. Proceedings of International Technical Meeting of Institute of Navigation, San Diego, CA, USA, 24–26 January 2011.
[23]  Mannini, A.; Sabatini, A.M. Machine learning methods for classifying human physical activity from On-Body accelerometers. Sensors 2010, 10, 1154–1175.
[24]  Altun, K.; Barshan, B.; Tuncel, O. Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recogn. 2010, 43, 3605–3620.
[25]  Kononen, V.; Mantyjarvi, J.; Simila, H.; Parkka, J.; Ermes, M. Automatic feature selection for context recognition in mobile devices. Pervasive Mob. Comput. 2010, 6, 181–197.
[26]  Yang, J.; Lu, H.; Liu, Z.; Boda, P.P. Physical activity recognition with mobile phones: challenges, methods, and applications. Multimedia Interact. Intell. User Interfaces Adv. Patt. Recogn. 2010, doi:10.1007/978-1-84996-507-1_8.
[27]  Susi, M. Gait Analysis for Pedestrian Navigation Using MEMS Handheld Devices. M.S. Thesis, Department of Geomatics Engineering, the University of Calgary, Calgary, AB, Canada, 2012.
[28]  Reddy, M.; Mun, J.; Burke, D.; Estrin, M.; Hansen; Srivastava, M. Using mobile phones to determine transportation modes. ACM Trans. Sen. Netw. 2010, 6, 1–27.
[29]  Stenneth, L.; Wolfson, O.; Yu, P.S.; Xu, B. Transportation Mode Detection Using Mobile Phones and GIS Information. Proceeding of ACM SIGSPATIAL GIS ‘11, Chicago, IL, USA, 1–4 November 2011; pp. 54–63.
[30]  Pei, L.; Liu, J.; Guinness, R.; Chen, Y.; Kuusniemi, H.; Chen, R. Using LS-SVM based motion recognition for smartphone indoor wireless positioning. Sensors 2012, 12, 6155–6175.
[31]  Kamisaka, D.; Muramatsu, S.; Iwamoto, T.; Yokoyama, H. Design and implementation of pedestrian dead reckoning system on a mobile phone. IEICE Trans. 2011, 94, 1137–1146.
[32]  Renaudin, V.; Susi, M.; Lachapelle, G. Step length estimation using handheld inertial sensors. Sensors 2012, 12, 8507–8525.
[33]  Susi, M.; Renaudin, V.; Lachapelle, G. Quasi-Static Detection from MEMS Handheld Devices. Proceedings of the International Conference on Indoor Positioning and Navigation (IPIN), Guimar?es, Portugal, 21– 23 September 2011.
[34]  Jain, K. Statistical pattern recognition: A review. IEEE Trans. Patt. Anal. Mach. Intell 2000, 22, 4–37.
[35]  Mathie, M.J. Monitoring and Interpreting Human Movement Patterns Using a Triaxial Accelerometer. Ph.D. Thesis, University of New South Wales, Sydney, Australia, 2003.
[36]  Kantola, M.; Perttunen, M.; Leppanen, T.; Collin, J.; Riekki, J. Context Awareness for GPS-Enabled Phones. Proceedings of ION Technical Meeting, Manassas, VA, USA, 25–27 January 2010; pp. 117–124.
[37]  Dargie, W. Analysis of Time and Frequency Domain Features of Accelerometer Measurements. Proceeding of the 3rd IEEE Workshop on Performance Modeling and Evaluation of Computer and Telecommunication Networks (PMECT 2009), San Francisco, CA, USA, 2– 6 August 2009.
[38]  Cohen, L. Time Frequency Analysis: Theory and Applications; Prentice Hall, Inc.: Upper Sadle River, NJ, USA, 1995.
[39]  Park, J. Synthesis of natural arm swing motion in human bipedal walking. J. Biomech. 2008, 41, 1417–1426.
[40]  Morrison, A.; Renaudin, V.; Bancroft, J.B.; Lachapelle, G. Design and testing of a multi-sensor pedestrian location and navigation platform. Sensors 2012, 12, 3720–3738.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133