The propagation of the fundamental quasi-symmetric Lamb mode S 0 travelling along 3C-SiC/ c-AlN composite plates is theoretically studied with respect to the AlN and SiC film thickness, the acoustic wave propagation direction and the electrical boundary conditions. The temperature effects on the phase velocity have been considered for four AlN/SiC-based electroacoustic coupling configurations, specifically addressing the design of temperature-compensated, enhanced-coupling, GHz-range electroacoustic devices. The gravimetric sensitivity and resolution of the four temperature-stable SiC/AlN composite structures are theoretically investigated with respect to both the AlN and SiC sensing surface. The SiC/AlN-based sensor performances are compared to those of surface acoustic waves and Lamb S 0 mode mass sensors implemented on bulk conventional piezoelectric materials and on thin suspended membranes.
References
[1]
Levinshtein, M.E.; Rumyantsev, S.L.; Shur, M.S. Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe; John Wiley & Sons, Inc.: New York, NY, USA, 2001.
[2]
Liu, F.; Carraro, C.; Chu, J.; Maboudian, R. Residual stress characterization of polycrystalline 3C-SiC films on Si(100) deposited, from methylsilane. J. Appl. Phys. 2009, 106, doi:10.1063/1.3157184.
[3]
Roper, C.S.; Howe, R.T.; Maboudian, R. Stress control of polycrystalline 3C-SiC films in a large-scale LPCVD reactor using 1,3-disilabutane and dichlorosilane as precursors. J. Micromech. Microeng. 2006, 16, 2736–2739.
[4]
Isshiki, T.; Nishio, K.; Abe, Y.; Komiyama, J.; Suzuki, S.; Nakanishi, H. Semipolar nitrides grown on Si(001) offcut substrates with 3C-SiC buffer layers. Mater. Sci. Forum 2009, 600?603, 1317–1320.
[5]
Tanaka, Y.; Hasebe, Y.; Inushima, T.; Sandhu, A.; Ohoya, S. Comparison of AlN thin films grown on sapphire and cubic-SiC substrates by LP-MOCVD. J. Crystal Growth 2000, 209, 410–414.
[6]
Lin, C.-M.; Lien, W.-C.; Felmetsger, V.V.; Hopcroft, M.A.; Senesky, D.G.; Pisano, A. AlN thin films grown on epitaxial 3C-SiC (100) for piezoelectric resonant devices. App. Phys. Lett. 2010, 97, doi:10.1063/1.3511471.
[7]
Lin, C.-M.; Chen, Y.-Y.; Pisano, A.P. Theoretical investigation of lamb wave characteristics in AlN/3C-SiC composite membranes. Appl. Phys. Lett. 2010, 97, doi:10.1063/1.3495782.
[8]
Adler, E.L.; Farnell, G.W.; Slaboszewicz, J.; Jen, C.K. Interactive PC Software for SAW Propagation in Anisotropic Multilayers. Proceedings of the IEEE Ultrasonics Symposium, San Diego, CA, USA, 27–29 October 1982; pp. 103–107.
[9]
Tsubuochi, K.; Sugai, K.; Mikoshiba, N. AlN Material Constants Evaluation and SAW Properties on AlN/Al2O3 and AlN/Si. Proceedings of the IEEE Ultrasonics Symposium, Chicago, IL, USA, 14–16 October 1981; pp. 375–380.
[10]
Hellwege, K.-H.; Hellwege, A.M. Landolt-B?rnstein, Numerical Data and Functional Relationships in Science and Technology, New Series, Group III; Springer-Verlag: Berlin, Germany, 1979.
[11]
Farnell, G.W. Properties of elastic surface waves. In Physical Acoustics, Principles and Methods; Mason, W.P., Thurston, R.N., Eds.; Academic Press: New York, NY, USA, 1970; Volume VI. Chapter 4, p. 121.
[12]
Farnell, G.W.; Adler, E.L. Elastic wave propagation in thin layers. In Physical Acoustics, Principles and Methods; Mason, W.P., Thurston, R.N., Eds.; Academic Press: New York, NY, USA, 1972; Volume IX. Chapter 2, p. 79.
[13]
Cohen, M.G. Optical study of ultrasonic diffraction and focusing in anisotropic media. J. Appl. Phys. 1967, 38, 3821–3828.
[14]
Caliendo, C. Analysis of dispersive electroacoustic coupling configurations for application to gigahertz-band, temperature-compensated AlN-based acoustic devices. Appl. Phys. Lett. 2008, 92, doi:10.1063/1.2892044.
[15]
Li, Z.; Bradt, R.C. The single crystal elastic constants of hexagonal SiC to 1000 °C. Int. J. High Technol. Ceram. 1988, 4, 1–10.
[16]
Li, Z.; Bradt, R.C. The single-crystal elastic constants of cubic (3C) SiC to 1000° C. J. Mater. Sci. 1987, 22, 2557–2559.
[17]
Snead, L.L.; Nozawa, T.; Katoh, Y.; Byun, T.-S.; Kondo, S.; Petti, D.A. Handbook of SiC properties for fuel performance modeling. J. Nucl. Mater. 2007, 371, 329–377.
[18]
De Anna, R.G.; Roy, S.; Zorman, C.A.; Mehregany, M. Modeling of SiC Lateral Resonant Devices over a Broad Temperature Range. Proceedings of the International Conference on Modeling and Simulation of Microsystems, San Juan, Puerto Rico, 19–21 April 1999; p. 644.
[19]
Zhao, X.; Yang, F.; Zhang, H.; Xiao, P. Nondestructive evaluation of high-temperature elastic modulus of 3C-SiC using Raman scattering. J. Raman Spectrosc. 2012, 43, 945–948.
[20]
Hu, Y.F. Calculations for the structures and elastic properties of 3C-SiC compound at high temperature and pressure. J. Sichuan Univ. Sci. Eng. 2009, 22, 121–124.
[21]
Salem, J.; Li, Z.; Bradt, R.C. Thermal Expansion and Elastic Anisotropy in Single Crystal A12O3 and SiC Reinforcements. NASA Technical Memorandum-TM-106516. Proceeding of ASME Symposium on Advances Composite Materials and Structures, American Society of Mechanical Engineers, Anaheim, CA, USA, 10–12 December 1986.
[22]
Caliendo, C. Analysis of the acoustoelectric behavior of microwave frequency, temperature-compensated AlN-based multilayer coupling configurations. J. Appl. Phys. 2008, 104, doi:10.1063/1.3028231.
[23]
Tabib-Azar, M. Microactuators: Electrical, Magnetic, Thermal, Optical, Mechanical, Chemical and Smart Structures; Kluwer Academic Press: Boston, MA, USA, 1998; pp. 139–140.
[24]
Choujaa, A.; Tirole, N.; Bonjour, C.; Martin, G.; Hauden, D.; Blind, P.; Cachard, A.; Pommier, C. AlN/silicon Lamb-wave microsensors for pressure and gravimetric measurements. Sens. Actuators A Phys. 1995, 46–47, 179–182.
[25]
Wang, Z.; Cheeke, J.D.N.; Jen, C.K. Perturbation method for analyzing mass sensitivity of planar multilayer acoustic sensors. IEEE Trans. UFFC 1996, 43, 844–851.
[26]
Auld, B.A. Acoustic Fields and Waves in Solids; John Wiley & Sons: New York, NY, USA, 1973; Volume 2.
Caliendo, C. Theoretical investigation of high velocity, temperature compensated Rayleigh waves along AlN/SiC substrates for high sensitivity mass sensors. Appl. Phys. Lett. 2012, 100, doi:10.1063/1.3675619.
[29]
Lee, C.M.; Wong, K.M.; Chen, P.; Lau, K.M. GaN-Based Lamb-Wave Mass-Sensors on Silicon Substrates. Proceedings of the IEEE SENSORS 2010 Conference, Kona, HI, USA, 1–4 November 2010.
Wingqvist, G.; Arapan, L.; Katardjiev, I. A micromachined thermally compensated thin film Lamb wave resonator for frequency control and sensing applications. J. Micromech. Microeng. 2009, 19, doi:10.1088/0960-1317/19/3/035018.