Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effects of optical aberrations. The direct visualization of the photoreceptor cells, capillaries and nerve fiber bundles represents the major benefit of adding AO to retinal imaging. Adaptive optics is opening a new frontier for clinical research in ophthalmology, providing new information on the early pathological changes of the retinal microstructures in various retinal diseases. We have reviewed AO technology for retinal imaging, providing information on the core components of an AO retinal camera. The most commonly used wavefront sensing and correcting elements are discussed. Furthermore, we discuss current applications of AO imaging to a population of healthy adults and to the most frequent causes of blindness, including diabetic retinopathy, age-related macular degeneration and glaucoma. We conclude our work with a discussion on future clinical prospects for AO retinal imaging.
References
[1]
Lombardo, M.; Lombardo, G. Wave aberration of human eyes and new descriptors of image optical quality of the eye. J. Cataract Refract. Surg. 2010, 36, 313–331.
[2]
Thibos, L.N.; Hong, X.; Bradley, A.; Cheng, X. Statistical variation of aberration structure and image quality in a normal population of healthy eyes. JOSA A 2002, 19, 2329–2348.
[3]
Charman, W.N.; Chateau, N. The prospects for super-acuity: Limits to visual performance after correction of monochromatic ocular aberration. Ophthalmic Physl. Opt. 2003, 23, 479–493.
[4]
Guirao, A.; Porter, J.; Williams, D.R.; Cox, I.G. Calculated impact of higher-order monochromatic aberrations on retinal image quality in a population of human eyes. JOSA A 2002, 19, 1–9.
[5]
Resnikoff, S.; Pascolini, D.; Etya'ale, D.; Kocur, I.; Pararajasegaram, R.; Pokharel, G.P.; Mariotti, S.P. Global data on visual impairment in the year 2002. Bull. WHO 2004, 82, 844–851.
[6]
Williams, D.R. Imaging single cells in the living retina. Vis. Res. 2011, 51, 1379–1396.
Williams, D.R.; Yoon, G.Y.; Porter, J.; Guirao, A.; Hofer, H.; Cox, I. Visual benefit of correcting higher order aberrations of the eye. J. Refract. Surg. 2000, 16, S554–S559.
[9]
Castejon-Mochón, J.F.; López-Gil, N.; Benito, A.; Artal, P. Ocular wave-front aberration statistics in a normal young population. Vis. Res. 2002, 42, 1611–1617.
[10]
Porter, J.; Guirao, A.; Cox, I.G.; Williams, D.R. Monochromatic aberrations of the human eye in a large population. JOSA A 2001, 18, 1793–1803.
[11]
Thibos, L.N. The prospects for perfect vision. J. Refract. Surg. 2000, 16, S540–S546.
[12]
Thibos, L.N.; Bradley, A.; Hong, X. A statistical model of the aberration structure of normal, well-corrected eyes. Ophthalmic Physl. Opt. 2002, 22, 427–433.
[13]
Salmon, T.O.; Van de Pol, C. Normal-Eye zernike coefficients and root-mean-square wavefront errors. J. Cataract Refract. Surg. 2006, 32, 2064–2074.
[14]
Guirao, A.; Porter, J.; Williams, D.R.; Cox, I.G. Calculated impact of higher-order monochromatic aberrations on retinal image quality in a population of human eyes. JOSA A 2002, 19, 1–9.
[15]
Wang, Y.; Zhao, K.; Jin, Y.; Zuo, T. Changes of higher order aberration with various pupil sizes in myopic eyes. J. Refract. Surg. 2003, 19, S270–S274.
[16]
Cheng, H.; Barnett, J.K.; Vilupuru, A.S.; Marsack, J.D.; Kasthurirangan, S.; Applegate, R.A.; Roorda, A. A population study on changes in wave aberrations with accommodation. J. Vis. 2004, 4, 272–280.
[17]
Hofer, H.; Artal, P.; Singer, B.; Aragon, J.L.; Williams, D.R. Dynamics of the eye's wave aberration. JOSA A 2001, 18, 497–506.
[18]
Li, K.; Yoon, G. Changes in aberration and retinal image quality due to tear film dynamics. Opt. Express 2006, 14, 12552–12559.
[19]
Dreher, A.W.; Bille, J.F.; Weinreb, R.N. Active optical depth resolution improvement of the laser tomographic scanner. Appl. Opt. 1989, 28, 804–808.
[20]
Liang, J.; Miller, D.T.; Williams, D.R. Supernormal and high-resolution retinal imaging through adaptive optics. JOSA A 1997, 14, 2884–2892.
Miller, D.T.; Kocaoglu, O.P.; Wang, Q.; Lee, S. Adaptive optics and the eye (super resolution OCT). Eye 2011, 25, 321–330.
[23]
Carroll, J.; Neitz, M.; Hofer, H.; Neitz, J.; Williams, D.R. Functional photoreceptor loss revealed with adaptive optics: An alternate cause of color blindness. PNAS 2004, 101, 8461–8466.
Lombardo, M.; Lombardo, G. New methods and techniques for sensing the wave aberration of human eyes. Clin. Exp. Optom. 2009, 92, 176–186.
[26]
Liang, J.; Grimm, B.; Goelz, S.; Billie, J.F. Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor. JOSA A 1994, 11, 1949–1957.
[27]
Platt, R.; Shack, R. History and principles of Shack-Hartmann wavefront sensing. J. Refract. Surg. 2001, 17, S573–S577.
[28]
Pfund, J.; Lindlein, N.; Schwider, J. Dynamic range expansion of a shack-hartmann sensor by use of a modified unwrapping algorithm. Opt. Lett. 2000, 39, 561–567.
[29]
Miller, J.M.; Anwaruddin, R.; Straub, J.; Schwiegerling, J. Higher order aberrations in normal, dilated, intraocular lens, and laser in situ keratomileusis corneas. J. Refract. Surg. 2002, 18, S579–S583.
[30]
Kuroda, T.; Fujikado, T.; Maeda, N.; Oshika, T.; Hirohara, Y.; Mihashi, T. Wavefront analysis of higher-order aberrations in patients with cataract. J. Cataract Refract. Surg. 2002, 28, 438–44.
[31]
Marsack, J.; Milner, T.; Rylander, G.; Leach, N.; Roorda, A. Applying wavefront sensors and corneal topography to keratoconus. Biomed. Sci. Instrum. 2002, 38, 471–476.
[32]
Yoon, G.; Pantanelli, S.; Nagy, L.J. Large-Dynamic-Range shack-hartmann wavefront sensor for highly aberrated eyes. J. Biomed. Opt. 2006, 11, 30502.
[33]
Gonsalves, R.A. Phase retrieval and diversity in adaptive optics. Opt. Eng. 1982, 21, 829–832.
Teague, M.R. Deterministic phase retrieval: A Green's function solution. JOSA A 1983, 73, 1434–1441.
[36]
Gureyev, T.E.; Roberts, A.; Nugent, A. Phase retrieval with the transport-of-intensity equation: Matrix solution with use of Zernike polynomials. JOSA A 1995, 12, 1932–1941.
[37]
Gureyev, T.E.; Nugent, A. Phase retrieval with the transport-of-intensity equation. II. orthogonal series solution for nonuniform illumination. JOSA A 1996, 13, 1670–1682.
[38]
Roddier, F. Curvature sensing and compensation: A new concept in adaptive optics. Appl. Opt. 1988, 27, 1223–1225.
[39]
Diaz-Douton, F.; Pujol, J.; Arjona, M.; Luque, S.O. Curvature sensor for ocular wavefront measurement. Opt. Lett. 2006, 31, 2245–2247.
[40]
Ragazzoni, R. Pupil plane wavefront sensing with an oscillating prism 1996. J. Mod. Opt. 1996, 43, 289–293.
[41]
Ragazzoni, R.; Farinato, J. Sensitivity of a pyramidic wave front sensor in closed loop adaptive optics. Astron. Astrophys 1999, 350, L23–L26.
[42]
Iglesias, I.; Ragazzoni, R.; Julien, Y.; Artal, P. Extended source pyramid wave-front sensor for the human eye. Opt. Express 2002, 10, 419–428.
[43]
Chamot, S.R.; Dainty, C.; Esposito, S. Adaptive optics for ophthalmic applications using a pyramid wavefront sensor. Opt. Express 2006, 2, 518–526.
[44]
Leibbrandt, G.W.R.; Harbers, G.; Kunst, P.J. Wavefront analysis with high accuracy by use of a double-grating lateral shearing interferometer. Appl. Opt. 1996, 35, 6151–6161.
[45]
Gundlach, A.; Huntley, J.M.; Manzke, B.; Schwider, J. Speckle shearing interferometry using a diffractive optical beamsplitter. Opt. Eng. 1997, 36, 1488–1493.
[46]
Griffin, D.W. Phase-Shifting shearing interferometer. Opt. Lett. 2001, 26, 140–141.
[47]
Harbers, G.; Kunst, P.J.; Leibbrandt, W.R. Analysis of lateral shearing interferograms by use of Zernike polynomials. Appl. Opt. 1996, 35, 6162–6172.
Siegel, C.; Loewenthal, F.; Balmer, J.E. A wavefront sensor based on the fractional talbot effect. Opt. Commun. 2001, 194, 265–275.
[51]
Nakano, Y.; Murata, K. Measurements of phase objects using the Talbot effect and moiré techniques. Appl. Opt. 1984, 23, 2296–2299.
[52]
Salama, N.H.; Patrignani, D.; De Pasquale, L.; Sicre, E.E. Wavefront sensor using the talbot effect. Opt. Laser Technol. 1999, 31, 269–272.
[53]
Sekine, R.; Shibuya, T.; Ukai, K.; Komatsu, S.; Hattori, M.; Mihashi, T.; Nakazawa, N.; Hirohara, Y. Measurement of wavefront aberration of human eye using Talbot image of two-dimensional grating. Opt. Rev. 2006, 13, 207–211.
[54]
Warden, L.; Liu, Y.; Binder, P.S.; Dreher, A.W.; Sverdrup, L. Performance of a new binocular wavefront aberrometer based on a self-imaging diffractive sensor. J. Refract. Surg. 2008, 24, 188–196.
[55]
Prieto, P.; Fernández, E.; Manzanera, S.; Artal, P. Adaptive optics with a programmable phase modulator: Applications in the human eye. Opt. Exp. 2004, 12, 4059–4071.
[56]
Fernández, E.; Prieto, P.; Artal, P. Adaptive optics binocular visual simulator to study stereopsis in the presence of aberrations. JOSA A 2010, 27, A48–A55.
[57]
Kong, N.; Li, C.; Xia, M.; Li, D.; Qi, Y.; Xuan, L. Optimization of the open-loop liquid crystal adaptive optics retinal imaging system. J. Biomed. Opt. 2012, doi:10.1117/1.JBO.17.2.026001.
[58]
Hampson, K. Topical review: Adaptive optics and vision. J. Mod. Opt. 2008, 55, 3425–3467.
[59]
Hardy, J. Adaptive Optics for Astronomical Telescopes (Oxford Series in Optical and Imaging Sciences); Oxford University Press: New York, NY, USA, 1998.
[60]
Horsley, D.; Park, H.; Laut, S.; Wernet, J. Characterisation for vision science applications of a bimorph deformable mirror using phase-shifting interferometry. Proc. SPIE 2005, 5688, 133–144.
[61]
Chen, D.; Jones, S.; Silva, D.; Olivier, S. High-Resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirrors. JOSA A 2007, 24, 1305–1312.
[62]
Vdovin, G.; Sarro, P. Flexible mirror micromachined in silicon. Appl. Opt. 1995, 34, 2968–2972.
[63]
Bonora, S.; Poletto, L. Push-Pull membrane mirrors for adaptive optics. Opt. Express 2006, 14, 11935–11944.
[64]
Bonora, S.; Coburn, D.; Bortolozzo, U.; Dainty, C.; Residori, S. High resolution wavefront correction with photocontrolled deformable mirror. Opt. Express 2012, 20, 5178–5188.
[65]
Bifano, T.; Perreault, J.; Bierden, P.; Dimas, C. Micromachined deformable mirrors for adaptive optics. Proc. SPIE 2002, 4825, 10–13.
[66]
Fernández, E.; Vabre, L.; Hermann, B.; Unterhuber, A.; Pova?ay, B.; Drexler, W. Adaptive optics with a magnetic deformable mirror: applications in the human eye. Opt. Express 2006, 14, 8900–8917.
[67]
Lombardo, M.; Serrao, S.; Ducoli, P.; Lombardo, G. Adaptive optics photoreceptor imaging. Ophthalmology 2012, 119.
[68]
?dlund, E.; Raynaud, H.F.; Kulcsár, C.; Harms, F.; Levecq, X.; Martins, F.; Chateau, N.; Podoleanu, A. Control of an electromagnetic deformable mirror using high speed dynamics characterization and identification. Appl. Opt. 2010, 49, G120–G128.
[69]
Iqbal, A.; Wu, Z.; Amara, F. Closed-Loop control of magnetic fluid deformable mirrors. Opt. Express 2009, 17, 18597–18970.
[70]
Vdovin, G. Closed-loop adaptive optical system with a liquid mirror. Opt. Lett. 2009, 34, 524–526.
[71]
Devaney, N.; Dalimier, E.; Farrell, T.; Coburn, D.; Mackey, R.; Mackey, D.; Laurent, F.; Daly, E.; Dainty, C. Correction of ocular and atmospheric wavefronts: A comparison of the performance of various deformable mirrors. Appl. Opt. 2008, 47, 6550–6562.
[72]
Alpern, M.; Ching, C.C.; Kitahara, K. The directional sensitivity of retinal rods. J. Physiol. 1983, 343, 577–592.
[73]
Carroll, J.; Choi, S.S.; Williams, D.R. In vivo imaging of the photoreceptor mosaic of a rod monochromat. Vis. Res. 2008, 48, 2564–2568.
[74]
Dubra, A.; Sulai, Y.; Norris, J.L.; Cooper, R.F.; Dubis, A.M.; Williams, D.R.; Carroll, J. Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope. Biomed. Opt. Express 2011, 2, 1864–1876.
[75]
Doble, N.; Choi, S.S.; Codona, J.L.; Christou, J.; Enoch, J.M.; Williams, D.R. In vivo imaging of the human rod photoreceptor mosaic. Opt. Lett. 2011, 36, 31–33.
[76]
Garrioch, R.; Langlo, C.; Dubis, A.M.; Cooper, R.F.; Dubra, A.; Carroll, J. Repeatability on in vivo cone density and spacing measurements. Optom. Vis. Sci. 2012, 89, 632–643.
[77]
Li, K.Y.; Roorda, A. Automated identification of cone photoreceptors in adaptive optics retinal images. JOSA A 2007, 24, 1358–1363.
[78]
Xue, B.; Choi, S.S.; Doble, N.; Werner, J.S. Photoreceptor counting and montaging of en-face retinal images from an adaptive optics fundus camera. JOSA A 2007, 24, 1364–1372.
[79]
Wojtas, D.H.; Wu, B.; Ahnelt, P.K.; Bones, P.J.; Millane, R.P. Automated analysis of differential interference contrast microscopy images of the foveal cone mosaic. JOSA A 2008, 25, 1181–1189.
[80]
Rodieck, R.W. The density recovery profile: A method for the analysis of points in the plane applicable to retinal studies. Vis. Neurosci. 1991, 6, 95–111.
[81]
Brostow, W.; Dussault, J.P.; Fox, B.L. Construction of Voronoi polyhedra. J. Comput. Phys. 1978, 29, 81–92.
[82]
Chui, T.Y.P.; Song, H.; Burns, S. Individual variations in human cone photoreceptor packing density: Variations with refractive error. Invest. Ophthalmol. Vis. Sci. 2008, 49, 4679–4687.
[83]
Li, K.Y.; Tiruveedhula, P.; Roorda, A. Intersubject variability of foveal cone photoreceptor density in relation to eye length. Invest. Ophthalmol. Vis. Sci. 2010, 51, 6858–6867.
[84]
Chui, T.Y.P.; Song, H.; Burns, S. Adaptive-Optics imaging of human cone photoreceptor distribution. JOSA A 2008, 25, 3021–3029.
[85]
Song, H.; Chui, T.Y.P.; Zhong, Z.; Elsner, A.E.; Burns, S.A. Variation of cone photoreceptor packing density with retinal eccentricity and age. Invest. Ophthalmol. Vis. Sci. 2011, 52, 7376–7384.
[86]
Curcio, C.A.; Sloan, K.R.; Kalina, R.E.; Hendrickson, A.E. Human photoreceptor topography. J. Comp. Neurol. 1990, 292, 497–523.
[87]
Curcio, C.A.; Sloan, K.R. Packing geometry of human cone photoreceptors: variation with eccentricity and evidence of local anisotropy. Vis. Neurosci. 1992, 9, 169–180.
[88]
Curcio, C.A.; Sloan, K.R.; Packer, O.; Hendrickson, A.E.; Kalina, R.E. Distribution of cones in human and monkey retina: Individual variability and radial asymmetry. Science 1987, 236, 579–582.
[89]
?sterberg, G.A. Topography of the layer of rods and cones in the human retina. Acta Ophthalmol. 1935, 13, 1–97.
[90]
Jonas, J.B.; Schneider, U.; Naumann, G.O.H. Count and density of human retinal photoreceptors. Graef. Arch. Clin. Exp. Ophthal. 1992, 230, 505–510.
[91]
Lombardo, M.; Serrao, S.; Ducoli, P.; Lombardo, G. Variations in the image optical quality of the eye and the sampling limit of resolution of the cone mosaic with axial length in young adults. J. Cataract Refract. Surg. 2012, 38, 1147–1155.
[92]
Coletta, N.J.; Watson, T. Effect of myopia on visual acuity measured with laser interference fringes. Vis. Res. 2006, 46, 636–651.
[93]
Rossi, E.A.; Roorda, A. The relationship between visual resolution and cone spacing in the human fovea. Nat. Neurosci. 2010, 13, 156–157.
[94]
Sj?strand, J.; Olsson, V.; Popovic, Z.; Conradi, N. Quantitative estimations of foveal and extra-foveal retinal circuitry in humans. Vis. Res. 1999, 39, 2987–2998.
[95]
Drasdo, N.; Millican, C.L.; Katholi, C.R.; Curcio, C.A. The length of Henle fibers in the human retina and a model of ganglion receptive field density in the visual field. Vis. Res. 2007, 47, 2901–2911.
[96]
Pallikaris, A.; Williams, D.R.; Hofer, H. The reflectance of single cones in the living human eye. Invest. Ophthalmol. Vis. Sci. 2003, 44, 4580–4592.
[97]
Ravi, S.J.; Besecker, J.R.; Derby, J.C.; Kocaoglu, O.P.; Cense, B.; Gao, W.; Wang, Q.; Miller, D.T. Imaging outer segment renewal in living human cone photoreceptors. Opt. Express 2010, 18, 5257–5270.
[98]
Ravi, S.J.; Rha, J.; Zhang, Y.; Cense, B.; Gao, W.; Miller, D.T. In vivo functional imaging of human cone photoreceptors. Opt. Express 2007, 15, 16141–16160.
[99]
Cooper, R.F.; Dubis, A.M.; Pavaskar, A.; Rha, J.; Dubra, A.; Carroll, J. Spatial and temporal variation of rod photoreceptor reflectance in the human retina. Biomed. Opt. Express 2011, 2, 2577–2589.
[100]
Rha, J.; Schroeder, B.; Godara, P.; Carroll, J. Variable optical activation of human cone photoreceptors visualized using a short coherence light source. Opt. Lett. 2009, 34, 3782–3784.
[101]
Choi, S.S.; Doble, N.; Lin, J.; Christou, J.; Williams, D.R. Effect of wavelength on in vivo images of the human cone mosaic. JOSA A 2005, 22, 2598–2605.
[102]
Kocaoglu, O.P.; Lee, S.; Jonnal, R.S.; Wang, Q.; Herde, A.E.; Derby, J.C.; Gao, W.; Miller, D.T. Imaging cone photoreceptors in three dimensions and in time using ultrahigh resolution optical coherence tomography with adaptive optics. Biomed. Opt. Express 2011, 2, 748–763.
[103]
Pircher, M.; Kroisamer, J.S.; Felberer, F.; Sattmann, H.; G?ttzinger, E.; Hitzenberger, C.K. Temporal changes of human cone photoreceptors observed in vivo with SLO/OCT. Biomed. Opt. Express 2010, 2, 100–112.
Roorda, A.; Williams, D.R. Optical fiber properties of individual human cones. J. Vis. 2002, 35, 607–614.
[106]
Burns, S.A.; Wu, S.; He, J.C.; Elsner, A.E. Variations in photoreceptor directionality across the central retina. JOSA A 1997, 14, 2033–2040.
[107]
He, J.C.; Marcos, S.; Burns, S.A. Comparison of cone directionality determined by psychophysical and reflectometric techniques. JOSA A 1999, 16, 2363–2369.
[108]
Rativa, D.; Vohnsen, B. Analysis of individual cone-photoreceptor directionality using scanning laser ophthalmoscopy. Biomed. Opt. Express 2011, 2, 1423–1431.
[109]
Marcos, S.; Tornow, R.P.; Elsner, A.E.; Navarro, R. Foveal cone spacing and cone photopigment density difference: objective measurements in the same subjects. Vis. Res. 1997, 37, 1909–1915.
[110]
Duncan, J.L.; Zhang, Y.; Gandhi, J.; Nakanishi, C.; Otham, M.; Brahnam, K.E.H.; Swaroop, A.; Roorda, A. High-Resolution imaging with adaptive optics in patients with inherited retinal degeneration. Invest. Ophthalmol. Vis. Sci. 2007, 48, 3283–3291.
[111]
Chen, Y.; Ratnam, K.; Sundquist, S.M.; Lujan, B.; Ayyagari, R.; Gudiseva, V.H.; Roorda, A.; Duncan, J.L. Cone photoreceptor abnormalities correlate with vision loss in patients with Stargardt disease. Invest. Ophthalmol. Vis. Sci. 2011, 52, 3281–3292.
[112]
Choi, S.S.; Zawadzki, R.J.; Lim, M.C.; Brandt, J.D.; Keltner, J.L.; Doble, N.; Werner, J.S. Evidence of outer retinal changes in glaucoma patients as revealed by ultrahigh-resolution in vivo retinal imaging. Br. J. Ophthalmol. 2011, 95, 131–141.
[113]
Tam, J.; Dhamdhere, K.P.; Tiruveedhula, P.; Lujan, B.J.; Johnson, R.N.; Bearse, M.A.; Adams, A.J., Jr.; Roorda, A. Subclinical capillary changes in non-proliferative diabetic retinopathy. Optom. Vis. Sci. 2012, 89, E692–E703.
[114]
Tam, J.; Dhamdhere, K.P.; Tiruveedhula, P.; Manzanera, S.; Barez, S.; Bearse, M.A., Jr.; Adams, J.A.; Roorda, A. Disruption of the retinal parafoveal capillary network in type 2 diabetes before the onset of diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 2012, 52, 9257–9266.
[115]
Klein, R.; Knudtson, M.D.; Lee, K.E.; Gangnon, R.; Klein, B.E. The wisconsin epidemiologic study of diabetic retinopathy xxiii: The twenty-five-year incidence of macular edema in persons with type 1 diabetes. Ophthalmology 2009, 116, 497–503.
[116]
Scully, T. Diabetes in numbers. Nature 2012, 485, S2–S3.
[117]
Early Treatment Diabetic Retinopathy Study Research Group. Fundus photographic risk factors for progression of diabetic retinopathy. ETDRS Report Number 12. Ophthalmology 1991, 98, 823–833.
[118]
Moore, J.; Bagley, S.; Ireland, G.; McLeod, D.; Boulton, M.E. Three dimensional analysis of microaneurysms in the human diabetic retina. J. Anat. 1999, 194, 89–110.
[119]
Kern, T.S.; Engerman, R.L. Vascular lesions in diabetes are distributed non-uniformly within the retina. Exp. Eye Res. 1995, 60, 545–549.
[120]
Cunha-Vaz, J.G. Pathophysiology of diabetic retinopathy. Br. J. Ophthalmol. 1978, 62, 351–355.
[121]
Barber, A.J. A new view of diabetic retinopathy: a neurodegenerative disease of the eye. Prog. Neuro-Psych. Biol. Psych. 2003, 27, 283–290.
[122]
Verma, A.; Rani, P.K.; Raman, R.; Pal, S.S.; Laxmi, G.; Gupta, M.; Sahu, C.; Vaitheeswaran, S.T. Is neuronal dysfunction on early sign of diabetic retinopathy? Microperimetry and Spectral Domain Optical Coherence Tomography (SD-OCT) study in individuals with diabetes, but no diabetic retinopathy. Eye 2009, 23, 1824–1830.
[123]
Fletcher, E.L.; Phipps, J.A.; Wilkinson-Berka, J.L. Dysfunction of retinal neurons and glia during diabetes. Clin. Exp. Optom. 2005, 88, 132–145.
[124]
Lieth, E.; Gardner, T.W.; Barber, A.J.; Antonetti, D.A. Retinal neurodegeneration: Early pathology in diabetes. Clin. Exp. Ophthalmol. 2000, 28, 3–8.
[125]
Van Dijk, H.W.; Kok, P.H.; Garvin, M.; Sonka, M.; De Vries, J.H.; Michels, R.P.; Van Velthoven, M.E.; Schlingemann, R.O.; Verbraak, F.D.; Abràmoff, M.D. Selective loss of inner retinal layer thickness in type 1 diabetic patients with minimal diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 2009, 50, 3404–3409.
[126]
Kylstra, J.A.; Brown, J.C.; Jaffe, G.J.; Cox, T.A.; Gallemore, R.; Greven, C.M.; Hall, J.G.; Eifrig, D.E. The importance of fluorescein angiography in planning laser treatment of diabetic macular edema. Ophthalmology 1999, 106, 2068–2073.
[127]
Mendis, K.R.; Balaratnasingam, C.; Yu, P.; Barry, C.J.; McAllister, I.L.; Cringle, S.J.; Yu, D.Y. Correlation of histological and clinical images to determine the diagnostic value of fluorescein angiography for studying retinal capillary detail. Invest. Ophthalmol. Vis. Sci. 2010, 51, 5864–5869.
[128]
Popovic, Z.; Knutsson, P.; Thaung, J.; Petersen, M.O.; Sjostrand, J. Noninvasive imaging of human foveal capillary network using dual-conjugate adaptive optics. Invest. Ophthalmol. Vis. Sci. 2011, 52, 2649–2655.
[129]
Tam, J.; Martin, J.A.; Roorda, A. Noninvasive visualization and analysis of parafoveal capillaries in humans. Invest. Ophthalmol. Vis. Sci. 2010, 51, 1691–1698.
[130]
Uji, A.; Hangai, M.; Ooto, S.; Takayama, K.; Arakawa, N.; Imamura, H.; Nozato, K.; Yoshimura, N. The source of moving particles in parafoveal capillaries detected by adaptive optics scanning laser ophthalmoscopy. Invest. Ophthalmol. Vis. Sci. 2012, 53, 171–178.
Zhong, Z.; Petrig, B.L.; Qi, X.; Burns, S. In vivo measurement of erythrocyte velocity and retinal blood flow using adaptive optics scanning laser ophthalmoscopy. Opt. Expr. 2008, 16, 12746–12755.
[136]
Parravano, M.; Lombardo, M.; Lombardo, G.; Boccassini, B.; Lioi, S.; Varano, M. In Vivo investigation of the retinal microscopy in patients with type 1 Diabetes Mellitus. Invest. Ophthalmol. Vis. Sci. 2012, 53. E-Abstract: 5657.
[137]
Smith, W.; Assink, J.; Klein, R.; Mitchell, P.; Klaver, C.C.; Klein, B.E.; Hofman, A.; Jensen, S.; Wang, J.J.; De Jong, P.T. Risk factors for age-related macular degeneration: Pooled findings from three continents. Ophthalmology 2001, 108, 697–704.
[138]
Choudhury, F.; Varma, R.; McKean-Cowdin, R.; Klein, R.; Azen, S.P.; Los angeles latino eye study group. Risk factors for four-year incidence and progression of age-related macular degeneration: The los angeles latino eye study. Amer. J. Ophthalmol. 2011, 152, 385–395.
[139]
Chakravarthy, U.; Wong, T.Y.; Fletcher, A.; Piault, E.; Evans, C.; Zlateva, G.; Buggage, R.; Pleil, A.; Mitchell, P. Clinical risk factors for age-related macular degeneration: A systematic review and meta-analysis. BMC Ophthalmol. 2010, 13, 10–31.
Sobrin, L.; Ripke, S.; Yu, Y.; Fagerness, J.; Bhangale, T.R.; Tan, P.L.; Souied, E.H.; Buitendijk, G.H.S.; Merriam, J.E.; Richardson, A.J. Heritability and genome-wide association study to assess genetic differences between advanced age-related macular degeneration subtypes. Ophthalmology 2012, 119, 1874–1885.
[144]
Neale, B.M.; Fagerness, J.; Reynolds, R.; Sobrin, L.; Parker, M.; Raychaudhuri, S.; Tan, P.L.; Oh, E.C.; Merriam, J.E.; Souied, E. Genome-Wide association study of advanced age-related macular degeneration identifies a role of the hepatic lipase gene (LIPC). PNAS 2010, 20, 7395–7400.
[145]
McKay, G.J.; Patterson, C.C.; Chakravarthy, U.; Dasari, S.; Klaver, C.C.; Vingerling, J.R.; Ho, L.; De Jong, P.T.V.M.; Fletcher, A.E.; Young, I.S. Evidence of association of APOE with age-related macular degeneration: A pooled analysis of 15 studies. Hum Mutat. 2011, 32, 1407–1416.
[146]
Yu, Y.; Bhangale, T.R.; Fagerness, J.; Ripke, S.; Thorleifsson, G.; Tan, P.L.; Souied, E.H.; Richardson, A.J.; Merriam, J.E.; Buitendijk, G.H.S. Common variants near FRK/COL10A1 and VEGFA are associated with advanced age-related macular degeneration. Hum. Mol. Genet. 2011, 20, 3699–3709.
[147]
Seddon, J.M.; Reynolds, R.; Yu, Y.; Daly, M.J.; Rosner, B. Risk models for progression to advanced age-related macular degeneration using demographic, environmental, genetic, and ocular factors. Ophthalmology 2011, 118, 2203–2211.
[148]
Ding, X.; Patel, M.; Chan, C.C. Molecular pathology of age-related macular degeneration. Prog. Retin. Eye Res. 2009, 28, 1–18.
[149]
Grisanti, S.; Tatar, O. The role of vascular endothelial growth factor and other endogenous interplayers in age-related macular degeneration. Prog. Retin. Eye Res. 2008, 27, 372–390.
Godara, P.; Siebe, C.; Rha, J.; Michaelides, M.; Carroll, J. Assessing the photoreceptor mosaic over drusen using adaptive optics and SD-OCT. Ophthalmic Surg. Lasers Imaging 2010, 41, S104–S108.
[153]
Godara, P.; Wagner-Schuman, M.; Rha, J.; Connor, T.B., Jr.; Stepien, K.E.; Carroll, J. Imaging the photoreceptor mosaic with adaptive optics: Beyond counting cones. Advan. Exp. Med. Biol. 2012, 723, 451–458.
[154]
Boretsky, A.; Khan, F.; Burnett, G.; Hammer, D.X.; Ferguson, R.D.; Van Kuijk, F.; Motamedi, M. In vivo imaging of photoreceptor disruption associated with age-related macular degeneration: A pilot study. Laser Surg. Med. 2012, 44, 603–610.
[155]
Kotecha, A.; Fernandes, S.; Bunce, C.; Franks, W.A. Avoidable sight loss from glaucoma: Is it unavoidable? Br. J. Ophthalmol. 2012, 96, 816–820.
[156]
Quigley, H.A.; Broman, A.T. The number of people with glaucoma worldwide in 2010 and 2020. Br. J. Ophthalmol. 2006, 90, 262–167.
Alencar, L.M.; Zangwill, L.M.; Weinreb, R.N.; Bowd, C.; Sample, P.A.; Girkin, C.A.; Liebmann, J.M.; Medeiros, F.A. A comparison of rates of change in neuroretinal rim area and retinal nerve fiber layer thickness in progressive glaucoma. Invest. Ophthalmol. Vis. Sci. 2010, 51, 3531–3539.
[159]
Sakamoto, A.; Hangai, M.; Nukada, M.; Nakanishim, H.; Morim, S.; Koteram, Y.; Inoue, R.; Yoshimura, N. Three-dimensional imaging of macular retinal nerve fiber layer in glaucoma using spectral-domain optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 2010, 51, 5062–5070.
[160]
Quigley, H.A.; Reacher, M.; Katz, J.; Strahlman, E.; Gilbert, D.; Scott, R. Quantitative grading of nerve fiber layer photographs. Ophthalmology 1993, 100, 1800–1807.
[161]
Mansouri, K.; Leite, M.T.; Medeiros, F.A.; Leung, C.K.; Weinreb, R.N. Assessment of rates of structural change in glaucoma using imaging technologies. Eye 2011, 25, 269–277.
[162]
Lim, T.C.; Chattopadhyay, S.; Acharya, U.R. A survey and comparative study on the instruments for glaucoma detection. Med. Eng. Phys. 2012, 34, 129–139.
[163]
Takayama, K.; Ooto, S.; Hangai, M.; Arakawa, N.; Oshima, S.; Shibata, N.; Hanebuchi, M.; Inoue, T.; Yoshimura, N. High-Resolution imaging of the retinal nerve fiber layer in normal eyes using adaptive optics scanning laser ophthalmoscopy. PLoS ONE 2012, doi:10.1371/journal.pone.0033158.
Merino, D.; Duncan, J.L.; Tiruveedhula, P.; Roorda, A. Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope. Biomed. Opt. Express 2011, 2, 2189–2201.
[167]
Zawadzki, R.J.; Jones, S.M.; Pilli, S.; Balderas-Mata, S.; Kim, D.Y.; Olivier, S.S.; Werner, J.S. Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging. Biomed. Opt. Express 2011, 2, 1674–1686.
[168]
Tam, J.; Tiruveedhula, P.; Roorda, A. Characterization of single-file flow through human retinal parafoveal capillaries using an adaptive optics scanning laser ophthalmoscope. Biomed. Opt. Express 2011, 2, 781–793.
[169]
Chui, T.Y.C.; Van Nasdale, D.A.; Burns, S.A. The use of forward scatter to improve retinal vascular imaging with an adaptive optics scanning laser ophthalmoscope. Biomed. Opt. Express 2012, 3, 2537–2549.
[170]
Lombardo, M.; Lombardo, G.; Schiano, L.D.; Ducoli, P.; Stirpe, M.; Serrao, S. Interocular symmetry of parafoveal photoreceptor cone density distribution. Retina 2013. in press.
[171]
Rha, J.; Dubis, A.M.; Wagner-Schuman, M.; Tait, D.M.; Godara, P.; Schroeder, B.; Stepien, K.; Carroll, J. Spectral domain optical coherence tomography and adaptive optics: imaging photoreceptor layer morphology to interpret preclinical phenotypes. Advan. Exp. Med. Biol. 2010, 664, 309–316.
[172]
Seyedahmadi, B.J.; Vavvas, D. In vivo high-resolution retinal imaging using adaptive optics. Semin. Ophthalmol. 2010, 25, 186–191.