Extracorporeal Shock Wave Lithotriptors are very popular for the treatment of urinary stones all over the world. They depend basically upon either X-ray fluoroscopy or ultrasound scans to detect the stones before therapy begins. To increase the effectiveness of treatment this study took advantage of both X-ray and ultrasound to develop a dual stone locating system with image processing modules. Its functions include the initial stone locating mode with stone detection by fluorescent images and the follow-up automatic stone tracking mode made by constant ultrasound scanning. The authors have integrated both apparatus and present the operating principles for both modes. The system used two in vitro experiments to justify its abilities of stone location in all procedures.
References
[1]
Chaussy, C.; Brendel, W.; Schmiedt, E. Extracorporeally induced destruction of kidney stones by shock waves. Lancet 1980, 2, 1265–1268.
[2]
Sturevant, B. Shock Wave Physics of Lithotriptors. In Smith's Textbook of Endourology; Smith, A.D., Lingeman, J.E., Bagley, D.H., Preminger, G.M., Clayman, R.V., Badlani, G.H., Jordan, G.H., Kavoussi, L.V., Segura, J.W., Eds.; Quality Medical Publishing, Inc: St. Louis, MO, USA, 1996; Volume 1, pp. 529–552.
[3]
Alanee, S.; Ugarte, R.; Monga, M. The effectiveness of shock wave lithotripters: A case matched comparison. J. Urol. 2010, 184, 2364–2367.
[4]
Nakamura, K.; Tobiume, M.; Narushima, M.; Yoshizawa, T.; Nishikawa, G.; Kato, Y.; Katsuda, R.; Zennami, K.; Aoki, S.; Yamada, Y.; et al. Treatment of upper urinary tract stones with extracorporeal shock wave lithotripsy (ESWL) Sonolith vision. BMC Urol. 2011, 11, 26–30.
[5]
Suramo, I.; Paivansalo, M.; Myllyla, V. Cranio-caudal movements of the liver, pancreas and kidneys in respiration. Acta Radiol. 1984, 25, 129–131.
[6]
Cleveland, R.O.; Anglade, R.; Babayan, R.K. Effect of stone motion on in vitro comminution efficiency of a Storz Modulith SLX. J. Endourol. 2004, 18, 629–633.
[7]
Lingeman, J.E.; Woods, J.; Toth, P.D.; Evan, A.P.; McAteer, J.A. The role of lithotripsy and its side effects. J. Urol. 1989, 141, 793–797.
[8]
Kuwahara, M.A.; Kambe, K.; Taguchi, K.; Saito, T.; Shirai, S.; Orikasa, S. Initial experience using a new extracorporeal lithotripter with an anti-misshot control device. J. Lithotr. Stone Dis. 1991, 3, 141–146.
[9]
Orkisz, M.; Bourlion, M.; Gimenez, G.; Flam, T.A. Real-time target tracking applied to improve fragmentation of renal stones in extra-corporeal lithotripsy. Machine Vis. Appl. 1999, 11, 138–144.
[10]
Chang, C.C.; Liang, S.M.; Pu, Y.R.; Chen, C.H.; Manousakas, I.; Chen, T.S.; Kuo, C.L.; Yu, F.M.; Chu, Z.F. In vitro study of ultrasound based real-time tracking of renal stones for shock wave lithotripsy: Part I. J. Urol. 2001, 166, 28–32.
[11]
Chang, C.C.; Manousakas, I.; Pu, Y.R.; Liang, S.M.; Chen, C.H.; Chen, T.S.; Yu, F.M.; Yang, W.H.; Tong, Y.C.; Kuo, C.L. In vitro study of ultrasound-based real-time tracking for renal stones in shock wave lithotripsy: Part II—A simulated animal experiment. J. Urol. 2002, 167, 2594–2597.
[12]
Kapur, J.N.; Sahoo, P.K.; Wong, A.K.C. A new method for gray-level picture thresholding using the entropy of the histogram. Comput. Vis. Graph. Image Process. 1985, 29, 273–285.