We present a sensor technology for the measure of the physical human-robot interaction pressure developed in the last years at Scuola Superiore Sant’Anna. The system is composed of flexible matrices of opto-electronic sensors covered by a soft silicone cover. This sensory system is completely modular and scalable, allowing one to cover areas of any sizes and shapes, and to measure different pressure ranges. In this work we present the main application areas for this technology. A first generation of the system was used to monitor human-robot interaction in upper- (NEUROExos; Scuola Superiore Sant’Anna) and lower-limb (LOPES; University of Twente) exoskeletons for rehabilitation. A second generation, with increased resolution and wireless connection, was used to develop a pressure-sensitive foot insole and an improved human-robot interaction measurement systems. The experimental characterization of the latter system along with its validation on three healthy subjects is presented here for the first time. A perspective on future uses and development of the technology is finally drafted.
References
[1]
Turchetti, B.G.; Micera, S.; Cavallo, F.; Odetti, L.; Dario, P. Technology and innovative services. IEEE Pulse 2011, 2, 27–35.
[2]
Leven, J.; Burschka, D.; Kumar, R.; Zhang, G.; Blumenkranz, S.; Dai, X.; Award, M.; Hager, G.D.; Marohn, M.; Choti, M.; et al. DaVinci Canvas: A telerobotic surgical system with integrated, robot-assisted, laparoscopic ultrasound capability. Med. Image Comput. Comput. Assist. Interv. 2005, 8, 811–818.
[3]
Masia, L.; Krebs, H.I.; Cappa, P.; Hogan, N. Design and characterization of hand module for whole-arm rehabilitation following stroke. IEEE/ASME Trans. Mechatr. 2007, 12, 399–407.
[4]
Jezernik, S.; Colombo, G.; Keller, T.; Frueh, H.; Morari, M. Robotic orthosis lokomat: A rehabilitation and research tool. Neuromodulation 2003, 6, 108–115.
Guizzo, E.; Goldstein, H. The rise of the body bots. IEEE Spectr. 2005, 42, 50–56.
[7]
Banala, S.; Agrawal, S.; Scholz, J. Robot assisted gait training with active leg exoskeleton (ALEX). IEEE Trans. Neur. Syst. Rehab. Eng. 2009, 17, 2–8.
[8]
Schiele, A.; Visentin, G. The ESA Human Arm Exoskeleton for Space Robotics Telepresence. Proceedings of 7th International Symposium on Artificial Intelligence, Robotics and Automation in Space (iSAIRAS), Nara, Japan, 19–23 May 2003.
[9]
Walsh, C.; Pasch, K.; Herr, H. An Autonomous, Underactuated Exoskeleton for Load-Carrying Augmentation. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 9–15 October 2006; pp. 1410–1415.
[10]
Pylatiuk, C.; Kargov, A.; Gaiser, I.; Werner, T.; Schulz, S.; Bretthauer, G. Design of a Flexible Fluidic Actuation System for a Hybrid Elbow Orthosis. Proceedings of IEEE 11th International Conference on Rehabilitation Robotics, Kyoto, Japan, 23–26, June 2009; pp. 167–171.
[11]
Kong, K.; Jeon, D. Design and control of an exoskeleton for the elderly and patients. IEEE/ASME Trans. Mechatr. 2006, 11, 428–432.
[12]
Suzuki, K.; Mito, G.; Kawamoto, H; Hasegawa, Y.; Sankai, Y. Intention-based walking support for paraplegia patients with robot suit HAL. Adv. Robot. 2007, 21, 1441–1469.
[13]
Zoss, A.B.; Kazerooni, H.; Chu, A. Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX). IEEE ASME Trans. Mechatr. 2006, 11, 128–138.
[14]
Lünenburger, L.; Colombo, G.; Riener, R.; Dietz, V. Clinical Assessments Performed During Robotic Rehabilitation by the Gait Training Robot Lokomat. Proceedings of 9th International Conference on Rehabilitation Robotics, Chicago, IL, USA, 28 June–1 July 2005; pp. 345–348.
[15]
Dollar, A.M.; Herr, H. Lower Extremity Exoskeletons and Active Orthoses: Challenges and State-of the-Art. IEEE Trans. Robot. 2008, 24, 144–158.
De Santis, A.; Siciliano, B.; De Luca, A.; Bicchi, A. An atlas of physical human-robot interaction. Mech. Mach. Theory 2008, 43, 253–270.
[19]
Veneman, J.F.; Kruidhof, R.; Hekman, E.E.; Ekkelenkamp, R.; Van Asseldonk, E.H.; van der Kooij, H. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans. Neur. Syst. Rehab. Eng. 2007, 15, 379–86.
[20]
Stienen, A.; Hekman, E.; van der Helm, F.; Prange, G.; Jannink, M.; Aalsma, A.; van der Kooij, H. Dampace: Dynamic Force-Coordination Trainer for the Upper Extremities. Proceedings of IEEE 10th International Conference Rehabilitation Robotics, Noordwijk, The Netherlands, 12–15 June 2007; pp. 820–826.
[21]
Mihelj, M.; Nef, T.; Riener, R. ARMin II—7 DoF Rehabilitation Robot: Mechanics and Kinematics. Proceedings of IEEE International Conference on Robotics and Automation, Rome, Italy, 10–14 April 2007; pp. 4120–4125.
[22]
Dollar, A.M.; Herr, H. Design of a Quasi-Passive Knee Exoskeleton to Assist Running. Proceedings of 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 22–26 September 2008; pp. 747–754.
[23]
Allemand, Y.; Stauffer, Y.; Clavel, R.; Brodard, R. Design of a New Lower Extremity Orthosis for Overground Gait Training with the WalkTrainer. Proceedings of IEEE International Conference on Rehabilitation Robotics, Kyoto, Japan, 23–26 June 2009; pp. 550–555.
[24]
Vitiello, N.; Lenzi, T.; Roccella, S.; De Rossi, S.M.M.; Cattin, E.; Giovacchini, F.; Vecchi, F.; Carrozza, M.C. NEUROExos: A powered elbow exoskeleton for physical rehabilitation. IEEE Trans. Robot. 2012, doi:10.1109/TRO.2012.2211492.
[25]
Chiri, A.; Vitiello, N.; Giovacchini, F.; Roccella, S.; Vecchi, F.; Carrozza, M.C. Mechatronic design and characterization of the index finger module of a hand exoskeleton for post-stroke rehabilitation. IEEE Trans. Mechatr. 2012, 17, 884–894.
[26]
Kao, P.-C.; Ferris, D.P. Motor adaptation during dorsiflexion-assisted walking with a powered orthosis. Gait Posture 2009, 29, 230–236.
[27]
Ronsse, R.; Vitiello, N.; Lenzi, T.; van den Kieboom, J.; Carrozza, M.C.; Ijspeert, A.J. Human-robot synchrony: Flexible assistance using adaptive oscillators. IEEE Trans. Biomed. Eng. 2011, 58, 1001–1012.
[28]
Rocon, E.; Ruiz, A.F.; Manto, M.; Moreno, J.C.; Pons, J.L. Design and validation of a rehabilitation robotic exoskeleton for tremor assessment and suppression. Trans. Neur. Syst. Rehab. Eng. 2007, 15, 367–378.
[29]
Beyl, P.; Van Damme, M.; Van Ham, R.; Versluys, R.; Vanderborght, B.; Lefeber, D. An Exoskeleton for Gait Rehabilitation: Prototype Design and Control Principle. Proceedings of IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 19–23 May 2008; pp. 2037–2042.
[30]
Kim, K.; Hong, K.-J.; Kim, N.-G.; Kwon, T.-K. Assistance of the elbow flexion motion on the active elbow orthosis using muscular stiffness force feedback. J. Mech. Sci. Technol. 2011, 25, 3195–3203.
[31]
Tanada, T.; Hori, S.; Yamaguchi, R.; Feng, M.Q. Ultrasonic Sensor Disk for Detecting Muscular Force. In Proceeding on the 2003 IEEE International Workshop on Robot and Human Interactive Communication, Millbrae, CA, USA, 31 October–2 November 2003; pp. 291–295.
[32]
Lee, H.; Yu, S.; Lee, S.; Han, J.; Han, C. Development of Human-Robot Interfacing Method for Assistive Wearable Robot of the Human Upper Extremities. Proceedings of SICE Annual Conference, Chofu, Japan, 20–22 August 2008; pp. 1755–1760.
[33]
Lenzi, T.; Vitiello, N.; De Rossi, S.M.M.; Persichetti, A.; Giovacchini, F.; Roccella, S.; Vecchi, F.; Carrozza, M.C. Measuring human-robot interaction on wearable robot: A distributed approach. Mechatronics 2011, 21, 1123–1131.
[34]
De Rossi, S.M.M.; Vitiello, N.; Lenzi, T.; Ronsse, R.; Koopman, B.; Persichetti, A.; Giovacchini, F.; Vecchi, F.; Ijspeert, A.J.; van der Kooij, H.; Carrozza, M.C. Soft Artificial Tactile Sensors for the Measurement of Human-Robot Interaction in the Rehabilitation of the Lower Limb. Proceedings of International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), Buenos Aires, Argentina, 31 August–4 September 2010; pp. 1279–1282.
[35]
Gonzalez, J.; Garcya, A.; Vivas, M.; Ferrus, E.; Alcantara, E.; Forner, A. A New Portable Method for the Measurement of Pressure Discomfort Threshold (ptd) on the Foot Plant. Proceedings of 4th Symposium on Footwear Biomechanics, Canmore, Canada, 5–7 August 1999; pp. 48–49.
[36]
Krouskop, T.A.; Williams, R.; Krebs, M.; Herszkowicz, M.S.; Garber, S. Effectiveness of mattress overlays in reducing interface pressures during recumbency. J. Rehab. Res. Dev. 1985, 22, 7–10.
[37]
De Rossi, S.M.M.; Vitiello, N.; Lenzi, T.; Ronsse, R.; Koopman, B.; Persichetti, A.; Vecchi, F.; Ijspeert, A.J.; van der Kooij, H.; Carrozza, M.C. Sensing pressure distribution on a lower-limb exoskeleton physical human-machine interface. Sensors 2011, 11, 207–227.
[38]
Lenzi, T.; Vitiello, N.; De Rossi, S.M. M; Roccella, S.; Vecchi, F.; Carrozza, M.C. NEUROExos: A Variable Impedance Powered Elbow Exoskeleton. Proceedings of IEEE International Conference of Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 1419–1426.
[39]
De Rossi, S.M.M.; Lenzi, T.; Vitiello, N.; Donati, M.; Persichetti, A.; Giovacchini, F.; Vecchi, F.; Carrozza, M.C. Development of an In-Shoe Pressure Sensitive Device for Gait Analysis. Proceedings of International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–September 2011; pp. 5637–5640.
[40]
Persichetti, A.; Vecchi, F.; Carrozza, M.C. Conformant and flexible tactile sensor and method therefore WIPO Patent WO/2009/013599, 29 January 2009.
[41]
Persichetti, A.; Vecchi, F.; Vitiello, N.; Lenzi, T.; Carrozza, M.C. Skilsens: Conformant and Robust Sensing Skin. Proceedings of IEEE-RAS International Conference on Humanoid Robots, Workshop on “Tactile Sensing in Humanoids-Tactile Sensors and Beyound”, Paris, France, 7–10 December 2009.
[42]
Miller, K. Testing Elastomers for Hyperelastic Material Models in Finite Elements Analysis. Axel Products Testing and Analysis Report; Axel Products Inc.: Ann Arbor, MI, USA, 2000.
[43]
Pearson, I.; Pickering, M. The determination of a highly elastic adhesive's material properties and their representation in finite element analysis. Finite Elem. Anal. Design 2001, 37, 221–232.
[44]
Miller, K. Measuring Rubber and Plastic Friction for Analysis; Axel Products Inc.: Ann Arbor, MI, USA, 2006.
[45]
De Rossi, S.M.M.; Lenzi, T.; Vitiello, N.; Persichetti, A.; Giovacchini, F.; Carrozza, M.C. Struttura di tappeto sensorizzato (Sensorized mat structure) Italian Patent Application n. PI2011A000091. Application date: 23 August 2011.
[46]
De Rossi, S.M.M.; Lenzi, T.; Vitiello, N.; Persichetti, A.; Giovacchini, F.; Carrozza, M.C. Structure of Sensorized mat PCT Patent Application n. PCT/IB2012/054068. Application date: 9 August 2012.
[47]
Perry, J. Gait Analysis: Normal and Pathological Function; Slack Incorporated: Thorofare, NJ, USA, 1992.
[48]
Veneman, J.F.; Ekkelenkamp, R.; Kruidhof, R.; van der Helm, F.C.T.; van der Kooij, H. A series elastic- and Bowden-cable-based actuation system for use as torque actuator in exoskeleton-type robots. Int. J. Robot. Res. 2006, 25, 261–281.
[49]
Ekkelenkamp, R.; Veltink, P.; Stramigioli, S.; van der Kooij, H. Evaluation of a Virtual Model Control for Selective Support of Gait Functions Using an Exoskeleton. Proceedings of IEEE 10th International Conference on Rehabilitation Robotics, Noordwijk, The Netherlands, 12–15 June 2007; pp. 693–699.
[50]
De Rossi, S.M.M.; Crea, S.; Donati, M.; Reber?ek, P.; Novak, D.; Vitiello, N.; Lenzi, T.; Podobnik, J.; Munih, M.; Carrozza, M.C. Gait Segmentation Using Bipedal Foot Pressure Patterns. Proceeding of the Fourth IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, Roma, Italy, 24–27 June 2012; pp. 361–366.
[51]
Crea, S.; De Rossi, S.M.M.; Donati, M.; Reber?ek, P.; Novak, D.; Vitiello, N.; Lenzi, T.; Podobnik, J.; Munih, M.; Carrozza, M.C. Development of Gait Segmentation Methods for Wearable Foot Pressure Sensors. Proceeding of International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; pp. 7–10.
[52]
Ronsse, R.; Lenzi, T.; Vitiello, N.; Koopman, B.; van Asseldonk, E.; De Rossi, S.M.M.; van den Kieboom, J.; van der Kooij, H.; Carrozza, M.C.; Ijspeert, A.J. Oscillator-based assistance of cyclical movements: Model-based and model-free approaches. Med. Biol. Eng. Comput. 2011, 49, 1173–1185.
[53]
Crea, S.; Vitiello, N.; De Rossi, S.M. M.; Lenzi, T.; Donati, M.; Cipriani, C.; Carrozza, M.C. Development of an Experimental Set-Up for Providing Lower-Limb Amputees with an Augmenting Feedback. Proceeding of the International Conference on NeuroRehabilitation (ICNR), Toledo, Spain, 14–16 November 2012; pp. 1019–1023.
[54]
Harada, T.; Sato, T.; Mori, T. Estimation of Bed-Ridden Human's Gross and Slight Movement Based on Pressure Sensors Distribution Bed. Proceedings of IEEE International Conference on Robotics and Automation, Washington DC, USA, 11–15 May 2002; pp. 3795–3800.
[55]
Fallang, B.; Saugstad, O.D.; Hadders-Algra, M. Postural adjustments in preterm infants at 4 and 6 months post-term during voluntary reaching in supine position. Pediatr. Res. 2003, 54, 826–833.