全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Sensors  2013 

Evaluation of a 433 MHz Band Body Sensor Network for Biomedical Applications

DOI: 10.3390/s130100898

Keywords: Body Sensor Network (BSN), 433MHz ISM band, wireless transmission, sensors, performance evaluation, communication, healthcare, packet loss rate

Full-Text   Cite this paper   Add to My Lib

Abstract:

Body sensor networks (BSN) are an important research topic due to various advantages over conventional measurement equipment. One main advantage is the feasibility to deploy a BSN system for 24/7 health monitoring applications. The requirements for such an application are miniaturization of the network nodes and the use of wireless data transmission technologies to ensure wearability and ease of use. Therefore, the reliability of such a system depends on the quality of the wireless data transmission. At present, most BSNs use ZigBee or other IEEE 802.15.4 based transmission technologies. Here, we evaluated the performance of a wireless transmission system of a novel BSN for biomedical applications in the 433MHz ISM band, called Integrated Posture and Activity NEtwork by Medit Aachen (IPANEMA) BSN. The 433MHz ISM band is used mostly by implanted sensors and thus allows easy integration of such into the BSN. Multiple measurement scenarios have been assessed, including varying antenna orientations, transmission distances and the number of network participants. The mean packet loss rate (PLR) was 0.63% for a single slave, which is comparable to IEEE 802.15.4 BSNs in the proximity of Bluetooth orWiFi networks. Secondly, an enhanced version is evaluated during on-body measurements with five slaves. The mean PLR results show a comparable good performance for measurements on a treadmill (2.5%), an outdoor track (3.4%) and in a climate chamber (1.5%).

References

[1]  Yang, G.Z.; Yacoub, M. Body Sensor Networks, 1st ed. ed.; Springer-Verlag Inc.: New York, NY, USA, 2006.
[2]  Hao, Y.; Foster, R. Wireless body sensor networks for health-monitoring applications. Physiol. Meas. 2008, 29, R27.
[3]  Patel, M.; Wang, J. Applications, challenges, and prospective in emerging body area networking technologies. IEEE Wirel. Commun. 2010, 17, 80–88.
[4]  Hundley, R.O.; Gritton, E.C. Future technology-driven revolutions in military operations. Doc. Brief. Series 1994, 110, 1–105.
[5]  Jovanov, E.; O'Donnell Lords, A.; Raskovic, D.; Cox, P.G.; Adhami, R.; Andrasik, F. Stress monitoring using a distributed wireless intelligent sensor system. IEEE Eng. Med. Biol. Mag. 2003, 22, 49–55.
[6]  Pantelopoulos, A.; Bourbakis, N.G. A Survey on Wearable Sensor-Based Systems for Health Monitoring and Prognosis. IEEE Trans. Syst. Man Cybern.—Part C: Appl. Rev. 2010, 40, 1–12.
[7]  Ullah, S.; Khan, P.; Ullah, N.; Saleem, S.; Higgins, H.; Kwak, K. A review of wireless body area networks for medical applications. Int. J. Commun. Netw. Syst. Sci. 2009, doi:10.4236/ijcns.2009.28093.
[8]  Kohler, F.; Schieber, M.; Lucke, S.; Heinze, P.; Henke, S.; Matthesius, G.; Pferdt, T.; Wegertseder, D.; Stoll, M.; Anker, S.D. “Partnership for the Heart”—Development and testing of a new remote patient monitoring system. Dtsch. Med. Wochenschr. 2007, 132, 458–460.
[9]  Palmer, M.; Steffen, C.; Iakovidis, I.; Giorgio, F. European commission perspective: Telemedicine for the benefit of patients. Chronic Dis. Manag. Remote Patient Monit. 2009, 15, 13–15.
[10]  Penders, J.; Gyselinckx, B.; Vullers, R.; de Nil, M.; Nimmala, V.S.R.; van de Molengraft, J.; Yazicioglu, F.; Torfs, T.; Leonov, V.; Merken, P.; et al. Human++: From Technology to Emerging Health Monitoring Concepts. Proceedings of the 5th International Summer School and Symposium on Medical Devices and Biosensors (ISSS-MDBS), Hong Kong, China, 1–3 June 2008; pp. 94–98.
[11]  Jovanov, E.; Poon, C.; Yang, G.Z.; Zhang, Y.T. Guest editorial body sensor networks: From theory to emerging applications. IEEE Trans. Inf. Technol. Biomed. 2009, 13, 859–863.
[12]  Lai, D.; Begg, R.; Palaniswami, M. Healthcare Sensor Networks: Challenges Toward Practical Implementation; CRC Press: Boca Raton, FL, USA, 2011.
[13]  Kjeldskov, J.; Skov, M. Exploring context-awareness for ubiquitous computing in the healthcare domain. Pers. Ubiquitous Comput. 2007, 11, 549–562.
[14]  Colas, J.; Guillen, A. The Biomedical Engineer as a Driver for Health Technology Innovation. Proceedings of the IEEE EMBS 32nd Annual International Conference, Buenos Aires, Argentina, 31 August–4 September 2010.
[15]  Ballerstadt, R.; Kholodnykh, A.; Evans, C.; Boretsky, A.; Motamedi, M.; Gowda, A.; McNichols, R. Affinity-based turbidity sensor for glucose monitoring by optical coherence tomography: Toward the development of an implantable sensor. Anal. Chem. 2007, 79, 6965–6974.
[16]  Gomez, E.J.; Perez, M.E.H.; Vering, T.; Rigla Cros, M.; Bott, O.; Garcia-Saez, G.; Pretschner, P.; Brugues, E.; Schnell, O.; Patte, C.; et al. The INCA system: A further step towards a telemedical artificial pancreas. IEEE Trans. Inf. Technol. Biomed. 2008, 12, 470–479.
[17]  Ying, H.; Schloesser, M.; Schnitzer, A.; Schafer, T.; Schlaefke, M.; Leonhardt, S.; Schiek, M. Distributed intelligent sensor network for rehabilitation of parkinson's patients. IEEE Trans. Inf. Technol. Biomed. 2010, 15, 268–276.
[18]  Lo, B.; Yang, G.Z. Key Technical Challenges and Current Implementations of Body Sensor Networks. Proceedings of the 2nd International Workshop on Body Sensor Networks, London, UK, 12–13 April 2005.
[19]  Alomainy, A.; Hao, Y.; Hu, X.; Parini, C.G.; Hall, P.S. UWB on-body radio propagation and system modelling for wireless body-centric networks. IEE Proc. Commun. 2006, 153, 107–114.
[20]  Pei, J.S.; Kapoor, C.; Graves-Abe, T.L.; Sugeng, Y.P.; Ferzli, N.; Lynch, J.P. Investigation of data quality in a wireless sensing unit composed of off-the-shelf components. Proc. SPIE 2008, 5768, 118–128.
[21]  Takizawa, K.; Watanabe, K.; Kumazawa, M.; Hamada, Y.; Ikegami, T.; Hamaguchi, K. Performance Evaluation of Wearable Wireless Body Area Networks during Walking Motions in 444.5 MHz and 2450 MHz. Proceedings of the IEEE EMBS 32nd Annual International Conference, Buenos Aires, Argentina, 31 August–4 September 2010.
[22]  Alomainy, A.; Yang, H.; Pasveer, F. Numerical and experimental evaluation of a compact sensor antenna for healthcare devices. IEEE Trans. Biomed. Circuits Syst. 2007, 1, 242–249.
[23]  Cavalcanti, D.; Schmitt, R.; Soomro, A. Performance Analysis of 802.15.4 and 802.11e for Body Sensor Network Applications. Proceedings of the 4th International Workshop on Wearable and Implantable Body Sensor Networks (BSN); Springer: Aachen, Germany, 2007. Volume 13; p. 9.
[24]  Sikora, A.; Groza, V.F. Coexistence of IEEE 802.15.4 with Other Systems in the 2.4 GHz-ISM-Band. Proceedings of the IEEE Instrumentation and Measurement Technology Conference (IMTC), Ottawa, ON, Canada, 16–19 May 2005. Volume 3; pp. 1786–1791.
[25]  Yun, D.; Kang, J.; Kim, J.E.; Kim, D. A Body Sensor Network Platform with Two-Level Communications. Proceedings of the IEEE International Symposium on Consumer Electronics (ISCE), Piscataway, NJ, USA, 20–23 June 2007; pp. 1–6.
[26]  Beute, J. Fast-prototyping Using the BTnode Platform. Proceedings of the Proceedings Design, Automation and Test in Europe (DATE), Munich, Germany, 6–10 March 2006. Volume 1; pp. 1–6.
[27]  Paradiso, J.; Borriello, G.; Bonato, P. Implantable electronics. Pervasive Comput. IEEE 2008, 7, 12–13.
[28]  Weinstock, R.S. Closing the loop: Another step forward. Diabetes Care 2011, 34, 2136–2137.
[29]  Jetzki, S.; Kiefer, M.; Walter, M.; Leonhardt, S. Concepts for a Mechatronic Device to Control Intracranial Pressure. Proceedings of the 4th IFAC Symposium on Mechatronic Systems, Heidelberg, Germany, 12–14 September 2006. Volume 4; pp. 25–29.
[30]  Panescu, D. Emerging Technologies [wireless communication systems for implantable medical devices]. IEEE Eng. Med. Biol. Mag. 2008, 27, 96–101.
[31]  Kim, S.; Beckmann, L.; Pistor, M.; Cousin, L.; Walter, M.; Leonhardt, S. A Versatile Body Sensor Network for Health Care Applications. Proceedings of the 5th International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), Melbourne, Australia, 7–9 December 2009; pp. 175–180.
[32]  Kim, S.; Pistor, M.; Walter, M.; Leonhardt, S. Development of a Body Sensor Network in the 433 MHz Base Band for Medical Signal Acquisition. Proceedings of the 13th International Student Conference on Electrical Engineering POSTER, Prague, Czech Republic, 21 May 2009.
[33]  CrossbowTechnology. Mica2 Datasheet, 2004, Avaiable online: http://bullseye.xbow.com:81/Products/productdetails.aspx?sid=174 (accessed on 10 October 2012).
[34]  Volmer, A.; Orglmeister, R. Wireless Body Sensor Network for Low-Power Motion-Tolerant Syncronized Vital Sign Measurment. Proceedings of the Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE, Vancouver, BC, Canada, 20–24 August 2008; pp. 3422–3425.
[35]  Simon, D. An Embedded Software Primer; Addison-Wesley Professional: Toronto, Canada, 1999.
[36]  Xu, L.S.; Meng, M.Q.H.; Chao, H. Effects of dielectric values of human body on specific absorption rate following 430, 800, and 1200 MHz RF exposure to ingestible wireless device. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 52–59.
[37]  Petrie, C.S.; Connelly, J.A. A Noise-Based Random Bit Generator IC For Applications in Cryptography. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems, 1998, Atlanta, GA, USA, 31 May–3 June 1998; pp. 197–200.
[38]  Shin, S.Y.; Park, H.S.; Choi, S.; Kown, W.H. Packet error rate analysis of ZigBee under WLAN and bluetooth interferences. IEEE Trans. Wirel. Commun. 2007, 6, 2825–2830.
[39]  Incel, O.; Mullender, S.; Jansen, P.; Dulman, S. Measurements on the Efficiency of Overlapping Channels. Proceedings of 2007 2nd IEEE Workshop on the Networking Technologies for Software Define Radio Networks, San Diego, CA, USA, 18–21 June 2007; pp. 59–60.
[40]  Kammeyer, K.D. Nachrichtenübertragung, 3rd ed. ed.; B.G. Teubner GmbH: Leipzig, Germany, 2004.
[41]  Tektronix. Fundamentals of Real-Time Spectrum Analysis; Tektronix: Beaverton, OR, USA, 2009.
[42]  Rahman, M.; Hong, C.; Lee, S.; Bang, Y.C. Atlas: A traffic load aware sensor Mac design for collaborative body area sensor networks. Sensors 2011, 11, 11560–11580.
[43]  Xia, F.; Tian, Y.C.; Li, Y.; Sung, Y. Wireless sensor/actuator network design for mobile control applications. Sensors 2007, 7, 2157–2173.
[44]  Petrova, M.; Riihijarvi, J.; Mahonen, P.; Labella, S. Performance Study of IEEE 802.15.4 Using Measurements and Simulations. Proceedings of the Wireless Communications and Networking Conference, 2006. WCNC 2006. IEEE, Las Vegas, NV, USA, 3–6 April 2006. Volume 1; pp. 487–492.
[45]  Shopov, M.; Petrova, G.; Spasov, G. Evaluation of Zigbee-based body sensor networks. Ann. J. Electron. 2011, 5, 60–63.
[46]  Llosa, J.; Vilajosana, I.; Vilajosana, X.; Navarro, N.; Suri?ach, E.; Marquès, J. REMOTE, a wireless sensor network based system to monitor rowing performance. Sensors 2009, 9, 7069–7082.
[47]  Dhamdhere, A.D. Experiments with wireless sensor networks for real-time athlete monitoring. Proceedings of 2010 IEEE 35th Conference on Local Computer Networks (LCN), Denver, CO, USA, 11–14 October 2010; pp. 938–945.
[48]  Armstrong, S. Wireless connectivity for health and sports monitoring: A review. Br. J. Sports Med. 2007, 41, 285–289.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133