This paper presents a novel approach for guiding mobile robots inside greenhouses demonstrated by promising preliminary physical experiments. It represents a comprehensive attempt to use the successful principles of AGVs (auto-guided vehicles) inside greenhouses, but avoiding the necessity of modifying the crop layout, and avoiding having to bury metallic pipes in the greenhouse floor. The designed vehicle can operate different tools, e.g., a spray system for applying plant-protection product, a lifting platform to reach the top part of the plants to perform pruning and harvesting tasks, and a trailer to transport fruits, plants, and crop waste. Regarding autonomous navigation, it follows the idea of AGVs, but now laser emitters are used to mark the desired route. The vehicle development is analyzed from a mechatronic standpoint (mechanics, electronics, and autonomous control).
References
[1]
Derksen, R.C.; Frantz, J.; Ranger, C.M.; Locke, J.C.; Zhu, H.; Krause, C.R. Comparing greenhouse handgun delivery to poinsettias by spray volume and quality. Trans. ASABE 2008, 51, 27–33.
[2]
Derksen, R.C.; Zhu, H.; Ozkan, H.E.; Hammond, R.B.; Dorrance, A.E.; Spongberg, A.L. Determining the influence of spray quality, nozzle type, spray volume, and air-assisted application strategies on deposition of pesticides in soybean canopy. Trans. ASABE 2008, 51, 1529–1537.
[3]
Sánchez-Hermosilla, J.; Rincón, V.J.; Páez, F.; Agüera, F.; Carvajal, F. Field evaluation of a self-propelled sprayer and effects of the application rate on spray deposition and losses to the ground in greenhouse tomato crops. Pest Manag. Sci. 2011, 67, 942–947.
[4]
Sánchez-Hermosilla, J.; Rincón, V.J.; Páez, F.; Fernández, M. Comparative spray deposits by manually pulled trolley sprayer and a spray gun in greenhouse tomato crops. Crop Prot. 2012, 31, 119–124.
[5]
Nuyttens, D.; Braekman, P.; Windey, S.; Sonck, B. Potential dermal pesticide exposure affected by greenhouse spray application technique. Pest Manag. Sci. 2009, 65, 781–790.
[6]
Nuyttens, D.; Windey, S.; Sonck, B. Optimisation of a vertical spray boom for greenhouse spray applications. Biosyst. Eng. 2004, 89, 417–423.
[7]
Langenakens, J.; Vergauwe, G.; De Moor, A. Comparing hand-held spray guns and spray booms in lettuce crops in a greenhouse. Aspects Appl. Biol. 2002, 66, 123–128.
[8]
Nuyttens, D.; Windey, S.; Sonck, B. Comparison of operator exposure for five different greenhouse spraying applications. J. Agric. Saf. Health 2004, 10, 187–195.
[9]
Sánchez-Hermosilla, J.; Rodríguez, F.; González, R.; Guzmán, J.L.; Berenguel, M. A Mechatronic Description of an Autonomous Mobile Robot for Agricultural Tasks in Greenhouses. In Mobile Robots Navigation; Barrera, A., Ed.; InTech.: Rijeka, Croatia, 2010; pp. 583–608.
[10]
Kondo, N.; Monta, M.; Noguchi, N. Agricultural Robots. Mechanisms and Practice, 1st ed. ed.; Kyoto University Press: Kyoto, Japan, 2011.
[11]
Comba, L.; Martínez, S.F.; Gay, P.; Aimonino, D.A. Reliable low cost sensors and systems for the navigation of autonomous robots in pot crop nurseries. Proceedings of International Conference on Robotics and Associated High-technologies and Equipment for Agriculture, RHEA'2012, Pisa, Italy, 19–21 September 2012; pp. 203–208.
[12]
Gravalos, I.; Loutridis, S.; Moshou, D.; Gialamas, T.; Kateris, D.; Tsiropoulos, Z.; Xyradakis, P. Vibration effects of bumper suspension system on pipeline sensor-based platform for soil water monitoring. Proceedings of International Conference on Robotics and Associated High-technologies and Equipment for Agriculture, RHEA'2012, Pisa, Italy, 19–21 September 2012; pp. 209–214.
[13]
Sammons, P.J.; Furukawa, T.; Bulgin, A. Autonomous pesticide spraying robot for use in greenhouse. Proceedings of Australian Conference on Robotics and Automation, Sydney, Australia, 5–7 December 2005; pp. 1–9.
[14]
van Henten, E.J.; Hemming, J.; van Tuijl, B.A.J.; Kornet, J.G.; Meuleman, J.; Bontsema, J.; van Os, E.A. An autonomous robot for harvesting cucumbers in greenhouses. Autonom. Robot. 2002, 13, 241–258.
[15]
González, R.; Rodríguez, F.; Sánchez-Hermosilla, J.; Donaire, J.G. Navigation techniques for mobile robots in greenhouses. Appl. Eng. Agric. 2009, 25, 153–165.
[16]
Longo, D.; Pennisi, A.; Caruso, L.; Muscato, G.; Schillaci, G. An autonomous electrical vehicle based on low-cost ultrasound sensors for safer operations inside greenhouses. Proceedings of International Conference Ragusa, SHWA'2010, Ragusa, Italy, 16–18 September 2010; pp. 437–443.
[17]
Mandow, A.; Gómez de Gabriel, J.M.; Martínez, J.L.; Mu?oz, V.F.; Ollero, A.; García-Cerezo, A. The autonomous mobile robot Aurora for greenhouse operation. IEEE Robot. Auto. Mag. 1996, 3, 18–28.
[18]
Subramanian, V.; Burks, T.F.; Singh, S. Autonomous greenhouse sprayer vehicle using machine visión and ladar for steering control. Appl. Eng. Agric. 2005, 21, 935–943.
[19]
Borenstein, J.; Everett, H.R.; Feng, L. Navigating Mobile Robots. Systems and Techniques, 1st ed. ed.; A.K. Peters, Ltd.: Wellesley, MA, USA, 1996.
[20]
Plaza, V.; Rodríguez, F.; González, R. Vision system based-on RGB filter to guide autonomous vehicles in greenhouses. Proceedings of International Conference on Robotics and Associated High-technologies and Equipment for Agriculture, RHEA'2012, Pisa, Italy, 19–21 September 2012; pp. 189–194.
[21]
Brunelli, R. Template Matching Techniques in Computer Vision: Theory and Practice, 1st ed. ed.; John Wiley & Sons: Hoboken, NJ, USA, 2009.
[22]
González, R.; Rodríguez, F.; Guzmán, J.L.; Pradalier, C.; Siegwart, R. Combined visual odometry and visual compass for off-road mobile robots localization. Robotica 2012, 30, 865–878.
[23]
Bradski, G.; Kaehler, A. Learning OpenCV: Computer Vision with the OpenCV library, 1st ed. ed.; O'Reilly Media: Sebastopol, CA, USA, 2008.
[24]
PC104 Embedded Consortium. Available online: http://www.pc104.org (accessed 15 November 2012).