全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Regulation of spindle orientation and neural stem cell fate in the Drosophila optic lobe

DOI: 10.1186/1749-8104-2-1

Full-Text   Cite this paper   Add to My Lib

Abstract:

Here we investigate the relationship between neural progenitor identity and spindle positioning in the Drosophila optic lobe. We use molecular markers and live imaging to show that there are two populations of progenitors in the optic lobe: symmetrically dividing neuroepithelial cells and asymmetrically dividing neuroblasts. We use genetically marked single cell clones to show that neuroepithelial cells give rise to neuroblasts. To determine if a change in spindle orientation can trigger a neuroepithelial to neuroblast transition, we force neuroepithelial cells to divide along their apical/basal axis by misexpressing Inscuteable. We find that this does not induce neuroblasts, nor does it promote premature neuronal differentiation.We show that symmetrically dividing neuroepithelial cells give rise to asymmetrically dividing neuroblasts in the optic lobe, and that regulation of spindle orientation and division symmetry is a consequence of cell type specification, rather than a mechanism for generating cell type diversity.The division modes of stem cells are tightly regulated during development and adult tissue homeostasis. This ensures that tissues and organ systems develop to the correct size and contain the correct cell types for proper function. One way to expand the pool of stem or progenitor cells during development is to undergo symmetric cell division. Conversely, one way to generate differentiating cell types, while maintaining a constant stem/progenitor population, is to undergo asymmetric cell division where one daughter differentiates and the other remains a stem cell [1]. Recently, it has been suggested that the ratio of stem/progenitor cells to differentiating cells in a tissue can be regulated by changing spindle orientation, thereby altering the proportion of symmetric to asymmetric cell divisions. For example, it has been proposed that mammalian neuroepithelial cells first expand via symmetric divisions, followed by a burst of neuron production resulti

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133