|
Neural Development 2007
Making sense of zebrafish neural development in the MinervoisAbstract: The meeting 'From sensory perception to motor output: genetic bases of behavior in the zebrafish embryo' [1] was held at Minerve (South of France) on March 16–18, 2007. The meeting site was beautifully situated in the heart of the Minervois wine country, and its remoteness promoted conversations and interaction over the course of the program [2].The sessions were roughly organized in terms of neurogenesis and eye development on day 1, ear and lateral line development on day 2, and brain connectivity and behavior on day 3. Underlying all sessions, however, ran the growing importance of live imaging, an approach that takes full advantage of the transparency of fish embryos and early larvae. The imaging methods are expanding at a fast rate, with a rapidly increasing panoply of green fluorescent protein (GFP)-expressing reporter lines, fluorescent protein spectral variants, and photoactivatable compounds. Many fascinating movies were presented at the meeting exploring crucial steps in cell migration (R K?ster, D Gilmour, H Okamoto or neural differentiation (A Sagasti, K Kwan, W Harris, J Schweitzer, and documenting behavioral responses (S Jesuthasan, T Burt de Perera, F Engert, M Granato. There is no doubt that this level of analysis will play a major role in future progress.Bill Jeffery introduced the session on vision with a talk on his pet fish, the Mexican tetra, Astyanax fasciatus. This species has two forms: a surface form provided with pigment and eyes, and a cave form that is unpigmented and blind (Figure 1). The eyes of the blind form appear normally but begin to degenerate as early as two days after fertilization. Blind forms appeared independently at several locations less than a million years ago and possibly as recent as 105 years ago for some of them, suggesting that eye loss occurred rapidly and may be under strong selection.One common-sense explanation for the selective advantage of eye loss might be energy conservation. Jeffery showed, however, that the
|