全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Response of fine particulate matter concentrations to changes of emissions and temperature in Europe

DOI: 10.5194/acp-13-3423-2013

Full-Text   Cite this paper   Add to My Lib

Abstract:

PMCAMx-2008, a three dimensional chemical transport model (CTM), was applied in Europe to quantify the changes in fine particle (PM2.5) concentration in response to different emission reductions as well as to temperature increase. A summer and a winter simulation period were used, to investigate the seasonal dependence of the PM2.5 response to 50% reductions of sulfur dioxide (SO2), ammonia (NH3), nitrogen oxides (NOx), anthropogenic volatile organic compounds (VOCs) and anthropogenic primary organic aerosol (POA) emissions and also to temperature increases of 2.5 and 5 K. Reduction of NH3 emissions seems to be the most effective control strategy for reducing PM2.5, in both periods, resulting in a decrease of PM2.5 up to 5.1 μg m 3 and 1.8 μg m 3 (5.5% and 4% on average) during summer and winter respectively, mainly due to reduction of ammonium nitrate (NH4NO3) (20% on average in both periods). The reduction of SO2 emissions decreases PM2.5 in both periods having a significant effect over the Balkans (up to 1.6 μg m 3) during the modeled summer period, mainly due to decrease of sulfate (34% on average over the Balkans). The anthropogenic POA control strategy reduces total OA by 15% during the modeled winter period and 8% in the summer period. The reduction of total OA is higher in urban areas close to its emissions sources. A slight decrease of OA (8% in the modeled summer period and 4% in the modeled winter period) is also predicted after a 50% reduction of VOCs emissions due to the decrease of anthropogenic SOA. The reduction of NOx emissions reduces PM2.5 (up to 3.4 μg m 3) during the summer period, due to a decrease of NH4NO3, causing although an increase of ozone concentration in major urban areas and over Western Europe. Additionally, the NOx control strategy actually increases PM2.5 levels during the winter period, due to more oxidants becoming available to react with SO2 and VOCs. The increase of temperature results in a decrease of PM2.5 in both periods over Central Europe, mainly due to a decrease of NH4NO3 during summer (18%) and fresh POA during wintertime (35%). Significant increases of OA are predicted during the summer due mainly to the increase of biogenic VOC emissions. On the contrary, OA is predicted to decrease in the modeled winter period due to the dominance of fresh POA reduction and the small biogenic SOA contribution to OA. The resulting increase of oxidant levels from the temperature rise lead to an increase of sulfate levels in both periods, mainly over North Europe and the Atlantic Ocean. The substantial reduction of PM2.5 co

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133