|
β3-adrenoceptor agonist prevents alterations of muscle diacylglycerol and adipose tissue phospholipids induced by a cafeteria dietAbstract: Male Sprague-Dawley rats fed a cafeteria diet were treated orally with either the β3-AR agonist ZD7114 (1 mg/kg per day) or the vehicle for 60 days. Rats fed a chow diet were used as a reference group. In addition to the determination of body weight and insulin plasma level, lipid content and fatty acid composition in gastronemius and in epididymal adipose tissue were measured by gas-liquid chromatography, at the end of the study.In addition to higher body weights and plasma insulin concentrations, rats fed a cafeteria diet had greater triacylglycerol (TAG) and diacylglycerol (DAG) accumulation in skeletal muscle, contrary to animals fed a chow diet. As expected, ZD7114 treatment prevented the excessive weight gain and hyperinsulinemia induced by the cafeteria diet. Furthermore, in ZD7114 treated rats, intramyocellular DAG levels were lower and the proportion of polyunsaturated fatty acids, particularly arachidonic acid, in adipose tissue phospholipids was higher than in animals fed a cafeteria diet.These results show that activation of the β3-AR was able to prevent lipid alterations in muscle and adipose tissue associated with insulin resistance induced by the cafeteria diet. These changes in intramyocellular DAG levels and adipose tissue PL composition may contribute to the improved insulin sensitivity associated with β3-AR activation.Dietary fatty acids are known to influence the composition of stored triacylglycerol (TAG) and membrane phospholipids (PL) in adipose tissue [1]. More recently, it was demonstrated that the lipid profile in skeletal muscle reflected dietary lipids [2-4]. Furthermore, the modifications of fatty acid concentrations and composition in tissue lipids induced by a high fat diet has been associated with alterations in lipid metabolism and insulin sensitivity [5,6]. Indeed, enrichment of membrane PL with saturated fatty acids (SFA) was able to impair insulin action in skeletal muscle and adipose tissue, whereas a higher proportion of polyuns
|