全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effect of Ground Motion Directionality on Fragility Characteristics of a Highway Bridge

DOI: 10.1155/2011/536171

Full-Text   Cite this paper   Add to My Lib

Abstract:

It is difficult to incorporate multidimensional effect of the ground motion in the design and response analysis of structures. The motion trajectory in the corresponding multi-dimensional space results in time variant principal axes of the motion and defies any meaningful definition of directionality of the motion. However, it is desirable to consider the directionality of the ground motion in assessing the seismic damageability of bridges which are one of the most vulnerable components of highway transportation systems. This paper presents a practice-oriented procedure in which the structure can be designed to ensure the safety under single or a pair of independent orthogonal ground motions traveling horizontally with an arbitrary direction to structural axis. This procedure uses nonlinear time history analysis and accounts for the effect of directionality in the form of fragility curves. The word directionality used here is different from “directivity” used in seismology to mean a specific characteristic of seismic fault movement. 1. Introduction A spatially distributed civil infrastructure system located in a seismically active region is vulnerable to moderate to strong earthquake events. These extreme natural events may cause system interruption over a long period of time and entail substantial costs for postevent repair and restoration. This often results in unacceptable socioeconomic losses and societal disruption. The highway transportation network serving the State of California typically represents such a system. It is then prudent to develop an emergency response strategy for each community served by the system in order to minimize the negative consequences of the extreme earthquake events. For a highway network consisting of a large number of bridges, the initial step toward the development of such an emergency response strategy is to estimate, by means of predictive simulation, the reduction in the traffic flow capability of the network when its bridges are damaged due to regional seismic activity. Such reduction in the traffic flow capability will provide an estimate of network accessibility at distressed conditions. Consequently, the emergency response activities can be designed prior to any earthquake event. Because of the predictive and probabilistic nature of system performance simulation, bridge damage due to seismic activity must be simulated (i) on the basis of the ground motion intensity (typically, peak ground acceleration (PGA)) obtainable from the attenuation equations using the fundamental seismic source parameters and (ii) by

References

[1]  S. D. Werner, C. E. Taylor, J. E. Moore, J. S. Walton, and S. Cho, “A risk-based methodology for assessing the seismic performance of highway systems,” Tech. Rep. MCEER-00-0014, Multidisciplinary Center for Earthquake Engineering Research, State University of New York, Buffalo, NY, USA, 2000.
[2]  S. Cho, P. Gordon, J. E. Moore, H. W. Richardson, M. Shinozuka, and S. Chang, “Integrating transportation network and regional economic models to estimate the costs of a large urban earthquake,” Journal of Regional Science, vol. 41, no. 1, pp. 39–65, 2001.
[3]  N. Shiraki, M. Shinozuka, J. E. Moore, S. E. Chang, H. Kameda, and S. Tanaka, “System risk curves: probabilistic performance scenarios for highway networks subject to earthquake damage,” Journal of Infrastructure Systems, vol. 13, no. 1, pp. 43–54, 2007.
[4]  A. Kiremidjian, J. Moore, Y. Y. Fan, O. Yazlali, N. Basoz, and M. Williams, “Seismic risk assessment of transportation network systems,” Journal of Earthquake Engineering, vol. 11, no. 3, pp. 371–382, 2007.
[5]  Y. Zhou, S. Banerjee, and M. Shinozuka, “Socio-economic effect of seismic retrofit of bridges for highway transportation networks: a pilot study,” Structure and Infrastructure Engineering, vol. 6, no. 1-2, pp. 145–157, 2010.
[6]  M. Shinozuka and G. Deodatis, “Simulation of multi-dimensional Gaussian stochastic fields by spectral representation,” Applied Mechanics Reviews, vol. 49, no. 1, pp. 29–53, 1996.
[7]  E. L. Wilson and M. R. Button, “Three-dimensional dynamic analysis for multi-component earthquake spectra,” Earthquake Engineering and Structural Dynamics, vol. 10, no. 3, pp. 471–476, 1982.
[8]  E. L. Wilson, I. Suharwardy, and A. Habibullah, “A clarification of orthogonal effects in a three-dimensional seismic analysis,” Earthquake Spectra, vol. 11, no. 4, pp. 659–666, 1995.
[9]  O. A. López and R. Torres, “The critical angle of seismic incidence and the maximum structural response,” Earthquake Engineering and Structural Dynamics, vol. 26, no. 9, pp. 881–894, 1997.
[10]  J. J. Hernández and O. A. López, “Response to three-component seismic motion of arbitrary direction,” Earthquake Engineering and Structural Dynamics, vol. 31, no. 1, pp. 55–77, 2002.
[11]  M. Sultan and K. Kawashima, “Comparison of the seismic design of highway bridges in California and in Japan, Recent Selected Publications of Earthquake Engineering Div.,” Technical Memorandum of PWRI no. 3276, Public Works Research Institute (PWRI), Japan, 1994.
[12]  Computers and Structures, Inc., SAP2000 Nonlinear Users Manual, Version 8, Berkeley, Calif, USA, 2002.
[13]  Federal Highway Administration, Seismic design of bridges, Design Example No. 9 FHWA-SA-97-006, 1996.
[14]  California Department of Transportation, Seismic Design Criteria, Sacramento, Calif, USA, 2004.
[15]  S. Banerjee and M. Shinozuka, “Dynamic progressive failure of bridges,” in Proceedings of the ASCE Joint Specialty Conference on Probabilistic Mechanics and Structural, Albuquerque, NM, USA, 2004.
[16]  H. H. M. Hwang and J.-R. Huo, “Generation of hazard-consistent fragility curves for seismic loss estimation studies,” Tech. Rep. NCEER-94-0015, National Center for Earthquake Engineering Research (NCEER), State University of New York, Buffalo, NY, USA, 1994.
[17]  S. Fukushima, Y. Kai, and K. Yashiro, “Study on the fragility of system—part 1: structure with brittle elements in its stories,” in Proceedings of the 11th World Conference on Earthquake Engineering, Pergamon, Elsevier Science Ltd., 1996, Paper No. 333.
[18]  A. Singhal and A. S. Kiremidjian, “Bayesian updating of fragilities with application to RC frames,” Journal of Structural Engineering, vol. 124, no. 8, pp. 922–929, 1998.
[19]  M. Shinozuka, M. Q. Feng, J. Lee, and T. Naganuma, “Statistical analysis of fragility curves,” Journal of Engineering Mechanics, vol. 126, no. 12, pp. 1224–1231, 2000.
[20]  K. R. Karim and F. Yamazaki, “Effect of earthquake ground motions on fragility curves of highway bridge piers based on numerical simulation,” Earthquake Engineering and Structural Dynamics, vol. 30, no. 12, pp. 1839–1856, 2001.
[21]  M. Shinozuka, M. Q. Feng, H. Kim, T. Uzawa, and T. Ueda, “Statistical analysis of fragility curves,” Tech. Rep. MCEER-03-0002, Multidisciplinary Center for Earthquake Engineering Research (MCEER), The State University of New York, Buffalo, NY, USA, 2003.
[22]  E. Choi, R. DesRoches, and B. Nielson, “Seismic fragility of typical bridges in moderate seismic zones,” Engineering Structures, vol. 26, no. 2, pp. 187–199, 2004.
[23]  S. Banerjee and M. Shinozuka, “Nonlinear static procedure for seismic vulnerability assessment of bridges,” Computer-Aided Civil and Infrastructure Engineering, vol. 22, no. 4, pp. 293–305, 2007.
[24]  S. Banerjee, Statistical empirical and mechanistic fragility analysis of concrete bridges, Ph.D. dissertation, University of California, Irvine, Calif, USA, 2007.
[25]  HAZUS, “Earthquake loss estimation methodology,” Technical Manual HAZUS99-SR2, National Institute of Building for the Federal Emergency Management Agency, Washington, DC, USA, 1999.
[26]  S. Banerjee and M. Shinozuka, “Mechanistic quantification of RC bridge damage states under earthquake through fragility analysis,” Probabilistic Engineering Mechanics, vol. 23, no. 1, pp. 12–22, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133