全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Nonparametric Monitoring for Geotechnical Structures Subject to Long-Term Environmental Change

DOI: 10.1155/2011/275270

Full-Text   Cite this paper   Add to My Lib

Abstract:

A nonparametric, data-driven methodology of monitoring for geotechnical structures subject to long-term environmental change is discussed. Avoiding physical assumptions or excessive simplification of the monitored structures, the nonparametric monitoring methodology presented in this paper provides reliable performance-related information particularly when the collection of sensor data is limited. For the validation of the nonparametric methodology, a field case study was performed using a full-scale retaining wall, which had been monitored for three years using three tilt gauges. Using the very limited sensor data, it is demonstrated that important performance-related information, such as drainage performance and sensor damage, could be disentangled from significant daily, seasonal and multiyear environmental variations. Extensive literature review on recent developments of parametric and nonparametric data processing techniques for geotechnical applications is also presented. 1. Introduction Restoring and improving urban infrastructure is recognized by the National Academy of Engineering as one of the fourteen grand challenges for engineering (NAE, [1]), and according to the 2009 ASCE Report Cards for Americas Civil Infrastructure, the current condition of U.S. infrastructure is rated “D” [2]. Aging civil infrastructure including bridges, levees, and dams in the US is calling for urgent measures focusing on maintenance, repair, and renovation. Geotechnical structures, compared to other types of civil infrastructure, are more vulnerable to nature and human-induced hazards. For example, Landslides in the Pacific Coast, the Rocky Mountains, the Appalachian Mountains, Hawaii, and Puerto Rico regions cause fatalities of 25 to 50 per year and direct/indirect economic losses up to $3 billion per year [3]. Structural health monitoring (SHM) is an emerging technique for the assessment of structural condition, hazards, and risks, consisting of three major components: sensing and instrumentation, data communication and archiving, and data analysis and interpretation. With the advent of todays powerful digital media and Internet, the needs for the first two components have been readily filled in many cases, but serious technical challenges still exist on the third component; how to process voluminous sensor data to obtain critical information for decision making? The research community is caught overwhelmed with the complex and extensive nature of field data associated with various factors of geotechnical phenomena. Some important challenges in processing field

References

[1]  NAE, “Grand challenges for engineering,” 2011, http://www.engineeringchallenges.org/.
[2]  ASCE, “ASCE report cards for americas infrastructure,” Tech. Rep., American Society of Civil Engineers, Washington, DC, USA, 2009.
[3]  USGS, The U.S. Geological Survey Landslide Hazards Program 5-Year Plan (2006–2010), Reportno, U.S. Geological Survey, Washington, DC, USA, 2009.
[4]  H.-B. Yun, S. F. Masri, J.-S. Lee, and L. N. Reddi, “Long-term monitoring of a retainingwall using non-parametric identification methods,” submitted to Journal of Geotechnical and Geoenvironmental Engineering.
[5]  H.-S. Yu, Plasticity and Geotechnics, Springer, New York, NY, USA, 2006.
[6]  A. Schofield and C. P. Wroth, Critical State Soil Mechanics, McGraw-Hill, London, UK, 1968.
[7]  K. H. Roscoe and J. B. Burland, “On the generalized stress-strain behavior of “Wet” clay,” in Engineering Plasticity, pp. 535–609, Cambridge University Press, Cambridge, UK, 1968.
[8]  H. I. Ling, L. Callisto, D. Leshchinsky, and J. Koseki, Soil Stress-Strain Behavior: Measurement, Modeling and Analysis, Springer, Dordrecht, The Netherlands, 2007.
[9]  P.-Y. Hicher and J.-F. Shao, Constitutive Modeling of Soils and Rocks, Wiley, Hoboken, NJ, USA, 2008.
[10]  H. R. Thomas and Y. He, “Analysis of coupled heat, moisture and air transfer in a deformable unsaturated soil,” Geotechnique, vol. 45, no. 4, pp. 677–689, 1995.
[11]  H. R. Thomas, Y. He, M. R. Sansom, and C. L. W. Li, “On the development of a model of the thermo-mechanical-hydraulic behaviour of unsaturated soils,” Engineering Geology, vol. 41, no. 1-4, pp. 197–218, 1996.
[12]  M. Cervera, R. Codina, and M. Galindo, “On the computational efficiency and implementation of block-iterative algorithms for nonlinear coupled problems,” Engineering Computations, vol. 13, no. 6, pp. 4–30, 1996.
[13]  W. Xicheng and B. A. Schrefler, “A multi-frontal parallel algorithm for coupled thermo-hydro-mechanical analysis of deforming porous media,” International Journal for Numerical Methods in Engineering, vol. 43, no. 6, pp. 1069–1083, 1998.
[14]  H. R. Thomas, H. T. Yang, and Y. He, “Sub-structure based parallel solution of coupled thermo-hydro-mechanical modelling of unsaturated soil,” Engineering Computations, vol. 16, no. 4, pp. 428–442, 1999.
[15]  H. R. Thomas and Y. He, “A coupled heat-moisture transfer theory for deformable unsaturated soil and its algorithmic implementation,” International Journal for Numerical Methods in Engineering, vol. 40, no. 18, pp. 3421–3441, 1997.
[16]  H. R. Thomas and P. J. Cleall, “Inclusion of expansive clay behaviour in coupled thermo hydraulic mechanical models,” Engineering Geology, vol. 54, no. 1-2, pp. 93–108, 1999.
[17]  H. R. Thomas and H. Missoum, “Three-dimensional coupled heat, moisture, and air transfer in a deformable unsaturated soil,” International Journal for Numerical Methods in Engineering, vol. 44, no. 7, pp. 919–943, 1999.
[18]  I. Masters, W. K. S. Pao, and R. W. Lewis, “Coupling temperature to a double-porosity model of deformable porous media,” International Journal for Numerical Methods in Engineering, vol. 49, no. 3, pp. 421–438, 2000.
[19]  P. Nithiarasu, K. S. Sujatha, K. Ravindran, T. Sundararajan, and K. N. Seetharamu, “Non-Darcy natural convection in a hydrodynamically and thermally anisotropic porous medium,” Computer Methods in Applied Mechanics and Engineering, vol. 188, no. 1-3, pp. 413–430, 2000.
[20]  R. W. Zimmerman, “Coupling in poroelasticity and thermoelasticity,” International Journal of Rock Mechanics and Mining Sciences, vol. 37, no. 1-2, pp. 79–87, 2000.
[21]  D. Gawin and B. A. Schrefler, “Thermo-hydro-mechanical analysis of partially saturated porous materials,” Engineering Computations, vol. 13, no. 7, pp. 113–143, 1996.
[22]  M. J. Setzer, “Micro-ice-lens formation in porous solid,” Journal of Colloid and Interface Science, vol. 243, no. 1, pp. 193–201, 2001.
[23]  N. Li, F. Chen, B. Su, and G. Cheng, “Theoretical frame of the saturated freezing soil,” Cold Regions Science and Technology, vol. 35, no. 2, pp. 73–80, 2002.
[24]  F. Talamucci, “Freezing processes in porous media: formation of ice lenses, swelling of the soil,” Mathematical and Computer Modelling, vol. 37, no. 5-6, pp. 595–602, 2003.
[25]  J. G. Wang, C. F. Leung, and Y. K. Chow, “Numerical solutions for flow in porous media,” International Journal for Numerical and Analytical Methods in Geomechanics, vol. 27, no. 7, pp. 565–583, 2003.
[26]  A. W. Rempel, J. S. Wettlaufer, and M. G. Worster, “Premelting dynamics in a continuum model of frost heave,” Journal of Fluid Mechanics, no. 498, pp. 227–244, 2004.
[27]  R. D. Miller, “Freezing and heaving of saturated and unsaturated soil,” Highway Research Record, vol. 393, pp. 1–11, 1972.
[28]  P. Francisco, J. P. Villeneuve, and J. Stein, “Simulation and analysis of frost heaving in subsoils and granular fills of roads,” Cold Regions Science and Technology, vol. 25, no. 2, pp. 89–99, 1997.
[29]  G. P. Newman and G. W. Wilson, “Heat and mass transfer in unsaturated soils during freezing,” Canadian Geotechnical Journal, vol. 34, no. 1, pp. 63–70, 1997.
[30]  A. P. S. Selvaduraia, J. Hua, and I. Konuk, “Computational modelling of frost heave inducedsoil–pipeline interaction: I. Modelling of frost heave,” Elsevier Cold Regions Science and Technology, vol. 29, no. 3, pp. 215–228, 1999.
[31]  Y. M. Lai, Z. W. Wu, S. Y. Lui, and X. J. Den, “Non-linear analysis for the semicoupledproblem of temperature, seepage, and stress fields in cold region retaining walls,” Journal of Thermal Stresses, vol. 24, pp. 1199–1216, 2001.
[32]  Y. Lai, S. Liu, Z. Wu, Y. Wu, and J. M. Konrad, “Numerical simulation for the coupled problem of temperature and seepage fields in cold region dams,” Journal of Hydraulic Research, vol. 40, no. 5, pp. 631–635, 2002.
[33]  L. Yuanming, Z. Xuefu, X. Jianzhang, Z. Shujuan, and L. Zhiqiang, “Nonlinear analysis for frost-heaving force of land bridges on QING-TIBET railway in cold regions,” Journal of Thermal Stresses, vol. 28, no. 3, pp. 317–331, 2005.
[34]  J. M. Konrad, “Prediction of freezing-induced movements for an underground construction project in Japan,” Canadian Geotechnical Journal, vol. 39, no. 6, pp. 1231–1242, 2002.
[35]  P. S. K. Ooi, M. P. Walker, and J. D. Smith, “Performance of a single-propped wall during excavation and during freezing of the retained soil,” Computers and Geotechnics, vol. 29, no. 5, pp. 387–409, 2002.
[36]  S. A. Kudryavtsev, “Numerical modeling of the freezing, frost heaving, and thawing of soils,” Soil Mechanics and Foundation Engineering, vol. 41, no. 5, pp. 177–184, 2004.
[37]  W. K. Song and J. W. Rhee, “Analysis of underground pipelines subjected to frost heaving forces,” Key Engineering Materials, vol. 297-300, pp. 1241–1250, 2005.
[38]  P. Yang, J.-M. Ke, J. G. Wang, Y. K. Chow, and F.-B. Zhu, “Numerical simulation of frostheave with coupled water freezing, temperature and stress fields in tunnel excavation,” Computer and Geotechnics, vol. 33, pp. 330–340, 2006.
[39]  L. Jing, “A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering,” International Journal of Rock Mechanics and Mining Sciences, vol. 40, no. 3, pp. 283–353, 2003.
[40]  C. A. Troendle and J. O. Reuss, “Effect of clear cutting on snow accumulation and water outflow at Fraser, Colorado,” Hydrology and Earth System Sciences, vol. 1, no. 2, pp. 325–332, 1997.
[41]  P. D'Odorico, L. Ridolfi, A. Porporato, and I. Rodriguez-Iturbe, “Preferential states of seasonal soil moisture: the impact of climate fluctuations,” Water Resources Research, vol. 36, no. 8, pp. 2209–2219, 2000.
[42]  A. Longobardi, “Observing soil moisture temporal variability under fluctuating climatic conditions,” Hydrology and Earth System Sciences Discussions, vol. 5, no. 2, pp. 935–969, 2008.
[43]  B. A. Schrefler, “Computer modelling in environmental geomechanics,” Computers and Structures, vol. 79, no. 22-25, pp. 2209–2223, 2001.
[44]  G. Gioda and G. Maier, “Direct search solution of an inverse problem in elastoplasticity: identification of cohesion, friction angle and in situ stress by pressure tunnel test,” International Journal for Numerical Methods in Engineering, vol. 15, no. 12, pp. 1823–1848, 1980.
[45]  A. Cividini, L. Jurina, and G. Gioda, “Some aspects of “characterization ” problems in geomechanics,” International Journal of Rock Mechanics and Mining Sciences and, vol. 18, no. 6, pp. 487–503, 1981.
[46]  A. Cividini, G. Maier, and A. Nappi, “Parameter estimation of a static geotechnical model usinga Bayes approach,” International Journal for Numerical and Analytical Methods in Geomechanics, vol. 20, no. 5, pp. 215–226, 1983.
[47]  K. Arai, H. Ohta, and T. Yasui, “Simple optimization techniques for evaluating deformation moduli from field observations,” Soils and Foundations, vol. 23, no. 1, pp. 107–113, 1983.
[48]  K. Arai, H. Ohta, and K. Kojima, “Estimation of soil parameters based on monitored movement of subsoil under consoildation,” Soils and Foundations, vol. 24, no. 4, pp. 95–108, 1984.
[49]  K. Arai, H. Ohta, K. Kojima, and M. Wakasugi, “Application of back-analysis to several test embankments on soft clay deposits,” Soils and Foundations, vol. 26, no. 2, pp. 60–72, 1986.
[50]  G. Gioda and S. Sakurai, “Back analysis procedures for the interpretation of field measurementsin geomechanics,” International Journal for Numerical and Analytical Methods in Geomechanics, vol. 11, no. 6, pp. 555–583, 1987.
[51]  M. Shoji, H. Ohta, T. Matsumoto, and S. Morikawa, “Safety control of embankment foundation based on elastic-plastic back analysis,” Soils and Foundations, vol. 29, no. 2, pp. 112–126, 1989.
[52]  M. Shoji, H. Ohta, K. Arai, T. Matsumoto, and T. Takahashi, “Two-dimensional consolidation back-analysis,” Soils and Foundations, vol. 30, no. 2, pp. 60–78, 1990.
[53]  A. Anandarajah and D. Agarwal, “Computer-aided calibration of a soil plasticity model,” International Journal for Numerical & Analytical Methods in Geomechanics, vol. 15, no. 12, pp. 835–856, 1991.
[54]  A. Murakami, T. Hasegawa, and H. Sakaguchi, “Comparison of static and statistical methods for backanalysis of elastic consolidation problems,” in Computer Methods and Advances in Geomechanics, G. Beer, J. R. Booker, and J. P. Carter, Eds., pp. 1011–1015, Balkema, Rotterdam, The Netherlands, 1991.
[55]  J. V. Beck and K. A. Woodbury, “Inverse problems and parameter estimation: integration of measurements and analysis,” Measurement Science and Technology, vol. 9, no. 6, pp. 839–847, 1998.
[56]  Z. Xiang, G. Swoboda, and Z. Cen, “Optimal layout of displacement measurements for parameteridentification process in geomechanics,” International Journal of Geomechanics, vol. 3, no. 2, pp. 205–216, 2003.
[57]  A. Ledesma, A. Gens, and E. E. Alonso, “Comparison of static and statistical methods for backanalysis of elastic consolidation problems,” in Computer Methods and Advances in Geomechanics, G. Beer, J. R. Booker, and J. P. Carter, Eds., pp. 1005–1010, Balkema, Rotterdam, The Netherlands, 1991.
[58]  Y. Honjo and P. Darmawan, “Prediction of future subsidence with quantified uncertainty by aninverse analysis,” in Proceedings of the 4th International Symposium on Land Subsidence, A. I. Johnson, Ed., pp. 625–634, Houston, Tex, USA, 1991.
[59]  A. Ledesma, A. Gens, and E. E. Alonso, “Estimation of parameters in geotechnical backanalysis - I. Maximum likelihood approach,” Computers and Geotechnics, vol. 18, no. 1, pp. 1–27, 1996.
[60]  A. Ledesma, A. Gens, and E. E. Alonso, “Parameter and variance estimation in geotechnicalbackanalysis using prior information,” International Journal for Numerical and Analytical Methods in Geomechanics, vol. 20, pp. 119–141, 1996.
[61]  A. Gens, A. Ledesma, and E. E. Alonso, “Estimation of parameters in geotechnical backanalysis - II. Application to a tunnel excavation problem,” Computers and Geotechnics, vol. 18, no. 1, pp. 29–46, 1996.
[62]  S. P. Neuman and S. Yakowitz, “A statistical approach to the inverse problem of aquifer hydrology. I. Theory,” Water Resources Research, vol. 15, no. 4, pp. 845–860, 1979.
[63]  R. L. Cooley, “Incorporation of prior information on parameters into nonlinear regression groundwater flow models. l. Theory,” Water Resources Research, vol. 18, no. 4, pp. 965–976, 1982.
[64]  Y. Honjo, Liu Wen-Tsung, and S. Guha, “Inverse analysis of an embankment on soft clay by extended Bayesian method,” International Journal for Numerical & Analytical Methods in Geomechanics, vol. 18, no. 10, pp. 709–734, 1994.
[65]  Y. Honjo, L. Wen-Tsung, and S. Sakajo, “Application of Akaike information criterion statistics to geotechnical inverse analysis: the extended Bayesian method,” Structural Safety, vol. 14, no. 1-2, pp. 5–29, 1994.
[66]  Y. Sakamoto, M. Ishigro, and G. Kitagawa, Akaike Information Criterion Statistics (Mathematicsand Its Applications), Springer, New York, NY, USA, 1999.
[67]  K. Arai, H. Ohta, and M. Miyata, “Comparison of static and statistical methods for backanalysis of elastic consolidation problems,” in Computer Methods and Advances in Geomechanics, G. Beer, J. R. Booker, and J. P. Carter, Eds., pp. 949–951, Balkema, Rotterdam, The Netherlands, 1991.
[68]  A. Murakami and T. Hasegawa, “Back analysis using Kalman filter-finite elements and optimallocation of observed points,” in Proceedings of the 6th International Conference on Numerical Methods in Geomechanics, Innsbruck, Austria, 1988.
[69]  Y. T. Kim and S. R. Lee, “An equivalent model and back-analysis technique for modelling in situ consolidation behavior of drainage-installed soft deposits,” Computers and Geotechnics, vol. 20, no. 2, pp. 125–142, 1997.
[70]  Y. Zheng, W. Mansheng, H. Liu, Y. Yao, and Z. Xiyuan, “Time-domain identification ofdynamic properties of layered soil by using extended Kalman filter and recorded seismic data,” Earthquake Engineering and Engineering Vibration, vol. 3, no. 2, pp. 237–247, 2004.
[71]  J. M. Mendel, Lessons in Estimation Theory for Signal Processing, Communications, and Control, Prentice Hall Signal Processing Series, Prentice Hall PTR, Upper Saddle River, NJ, USA, 1995.
[72]  D. P. Bertsekas, Nonlinear Programming, Athena Scientific, Belmount, Mass, USA, 2nd edition, 1999.
[73]  E. Haber, U. M. Ascher, and D. Oldenburg, “On optimization techniques for solving nonlinear inverse problems,” Inverse Problems, vol. 16, no. 5, pp. 1263–1280, 2000.
[74]  D. Yang, G. Li, and G. Cheng, “On the efficiency of chaos optimization algorithms for globaloptimization,” Chaos Solutions and Fractals, vol. 34, pp. 1366–1375, 2007.
[75]  S. F. Masri, A. W. Smyth, A. G. Chassiakos, M. Nakamura, and T. K. Caughey, “Training neural networks by adaptive random search techniques,” Journal of Engineering Mechanics, vol. 125, no. 2, pp. 123–132, 1999.
[76]  J. C. Brigham and W. Aquino, “Surrogate-Model Accelerated Random Search algorithm for global optimization with applications to inverse material identification,” Computer Methods in Applied Mechanics and Engineering, vol. 196, no. 45-48, pp. 4561–4576, 2007.
[77]  S. Pal, G. W. Wathugala, and S. Kundu, “Calibration of a constitutive model using genetic algorithms,” Computers and Geotechnics, vol. 19, no. 4, pp. 325–348, 1996.
[78]  A. A. Javadi, R. Farmani, V. V. Toropov, and C. P. M. Snee, “Identification of parameters for air permeability of shotcrete tunnel lining using a genetic algorithm,” Computers and Geotechnics, vol. 25, no. 1, pp. 1–24, 1999.
[79]  W. Gao, X. T. Feng, and Y. R. Zheng, “Identification of a constitutive model for geo-materials using a new intelligent bionics algorithm,” International Journal of Rock Mechanics and Mining Sciences, vol. 41, no. 1, pp. 2–6, 2004.
[80]  S. Levasseur, Y. Malécot, M. Boulon, and E. Flavigny, “Soil parameter identification using a genetic algorithm,” International Journal for Numerical and Analytical Methods in Geomechanics, vol. 32, no. 2, pp. 189–213, 2008.
[81]  Y. Zhang, D. Gallipoli, and C. E. Augarde, “Simulation-based calibration of geotechnical parameters using parallel hybrid moving boundary particle swarm optimization,” Computers and Geotechnics, vol. 36, no. 4, pp. 604–615, 2009.
[82]  G. E. P. Box and G. M. Jenkins, Time Series Analysis: Forecasting and Control, Holden-Day, San Francisco, Calif, USA, 1976.
[83]  S. Glaser, “System identification and its application to estimating soil properties,” Journal of Geotechnical Engineering, vol. 121, no. 7, pp. 553–560, 1995.
[84]  S. D. Glaser and A. L. Leeds, “Estimation of system damping at the lotung site by applicationof system identification,” Tech. Rep. NIST GCR 96-700, Colorado School of Mines, 1996.
[85]  S. D. Glaser and L. G. Baise, “System identification estimation of soil properties at the Lotung site,” Soil Dynamics and Earthquake Engineering, vol. 19, no. 7, pp. 521–531, 2000.
[86]  L. G. Baise, S. D. Glaser, and T. Sugano, “Consistency of dynamic site response at Port Island,” Earthquake Engineering and Structural Dynamics, vol. 30, no. 6, pp. 803–818, 2001.
[87]  S. D. Glaser, “Downhole seismic arrays and system identification of soil response,” in Proceedings of the 4th International Conference of Earthquake Engineering, Taipei, Taiwan, 2006.
[88]  N. E. Huang, Z. Shen, S. R. Long, et al., “The empirical mode decomposition and the Hilbert spectrum for nonlinearand non-stationary time series analysis,” Royal Society of London Proceedings Series A, vol. 454, pp. 903–995, 1998.
[89]  N. E. Huang, M. C. Wu, S. R. Long, et al., “Aconfidence limit for the empirical mode decomposition and Hilbert spectral analysis,” Royal Society of London Proceedings Series A, vol. 459, pp. 2317–2345, 2003.
[90]  N. E. Huang and N. O. Attoh-Okine, The Hilbert-Huang Transform in Engineering, CRC Press, New York, NY, USA, 1st edition, 2005.
[91]  K. T. Coughlin and K. K. Tung, “11-Year solar cycle in the stratosphere extracted by the empirical mode decomposition method,” Advances in Space Research, vol. 34, no. 2, pp. 323–329, 2004.
[92]  V. Radi?, Z. Pasari?, and N. ?inik, “Analysis of Zagreb climatological data series using empirically decomposed intrinsic mode functions,” Geofizika, vol. 21, pp. 15–36, 2004.
[93]  R. N. Iyengar and S. T. G. Raghu Kanth, “Intrinsic mode functions and a strategy for forecasting Indian monsoon rainfall,” Meteorology and Atmospheric Physics, vol. 90, no. 1-2, pp. 17–36, 2005.
[94]  I. M. Jánosi and R. Müller, “Empirical mode decomposition and correlation properties of long daily ozone records,” Physical Review E, vol. 71, no. 5, Article ID 056126, pp. 1–5, 2005.
[95]  K. I. Molla and A. Sumi, “Analysis of temperature change under global warming impact usingempirical mode decomposition,” International Journal of Information Theory, vol. 3, no. 2, 2006.
[96]  A. J. McDonal, A. J. G. Baumgaertner, S. E. Fraser, and S. Marsh, “Empirical mode decompositionof the atmospheric wave field,” Annales Geophysicae, vol. 25, pp. 375–384, 2007.
[97]  C.-H. Loh, T.-C. Wu, and N. E. Huang, “Application of the empirical mode decomposition-Hilbert spectrum method to identify near-fault ground-motion characteristics and structural responses,” Bulletin of the Seismological Society of America, vol. 91, no. 5, pp. 1339–1357, 2001.
[98]  N. Varadarajan and S. Nagarajaiah, “Response control of building with variable stiffness tunedmass damper using empirical mode decomposition and Hilbert transform algorithm,” in Proceedings of the 16th ASCE Engineering Mechanics Conference, Seattle, Wash, USA, 2003.
[99]  J. N. Yang, Y. Lei, S. Pan, and N. E. Huang, “System identification of linear structures basedon Hilbert-Huang spectral analysis. Part 1: normal modes,” Earthquake Engineering and Structural Dynamics, vol. 32, pp. 1443–1467, 2003.
[100]  J. N. Yang, Y. Lei, S. Pan, and N. E. Huang, “System identification of linear structures basedon Hilbert-Huang spectral analysis. Part 2: complex modes,” Earthquake Engineering and Structural Dynamics, vol. 32, pp. 1533–1554, 2003.
[101]  Y. L. Xu and J. Chen, “Structural damage detection using empirical mode decomposition: experimental investigation,” Journal of Engineering Mechanics, vol. 130, no. 11, pp. 1279–1288, 2004.
[102]  D. Pines and L. Salvino, “Structural health monitoring using empirical mode decomposition and the Hilbert phase,” Journal of Sound and Vibration, vol. 294, no. 1-2, pp. 97–124, 2006.
[103]  M. Shahin, M. B. Jaksa, and H. R. Maier, “Artificial neural network applications in geotechnicalengineering,” Australian Geomechanics, 2001.
[104]  G. Rilling, P. Flandrin, and P. Gonc alves, “On empirical mode decomposition and its algorithms,” in Proceedings of the IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing (NSIP '03), Grado, Italy, 2003.
[105]  E. Deléchelle, J. Lemoine, and O. Niang, “Empirical mode decomposition: an analytical approach for sifting process,” IEEE Signal Processing Letters, vol. 12, no. 11, pp. 764–767, 2005.
[106]  L. V. Fausett, Fundamentals of Neural Networks: Architectures, Algorithms and Applications, Prentice Hall, Upper Saddle River, NJ, USA, 1993.
[107]  K. Gurney, An Introduction to Neural Networks, University College London Press, 1997.
[108]  M. B. Jaksa, H. R. Maier, and M. Shahin, “Future challenges for artificial neural network modeling in geotechnical engineering,” in Proceedings of the 12th International Conference of International Associationfor Computer Methods and Advances in Geomechanics (IACMAG '08), Goa, India, 2008.
[109]  A. Hyv?rinen, J. Karhunen, and E. Oja, Independent Component Analysis, JohnWiley & Sons, New York, NY, USA, 2001.
[110]  I. T. Jollife, Principal Component Analysis, Springer Series in Statistics, Springer, New York, NY, USA, 2nd edition, 2002.
[111]  G. Kerschen and J. C. Golinval, “Non-linear generalization of principal component analysis: from a global to a local approach,” Journal of Sound and Vibration, vol. 254, no. 5, pp. 867–876, 2002.
[112]  G. Kerschen and J. C. Golinval, “Physical interpretation of the proper orthogonal modes using the singular value decomposition,” Journal of Sound and Vibration, vol. 249, no. 5, pp. 849–865, 2003.
[113]  F. C. Dai and C. F. Lee, “Terrain-based mapping of landslide susceptibility using a geographical information system: a case study,” Canadian Geotechnical Journal, vol. 38, no. 5, pp. 911–923, 2001.
[114]  M. Komac, “A landslide susceptibility model using the Analytical Hierarchy Process method and multivariate statistics in perialpine Slovenia,” Geomorphology, vol. 74, no. 1-4, pp. 17–28, 2006.
[115]  D. Folle, G. Raspa, M. Mancini, et al., “Geotechnical modelling of the subsoil of Rome (Italy) by means of multivariate geostatics,” in Proceedings of the 11th International Congress of International Association for Mathematical Geology (IAMG '06), Liège, Belgium, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133