|
Malaria Journal 2008
Heterologous expression of plasmodial proteins for structural studies and functional annotationAbstract: Malaria is a devastating disease and its long-term control and eradication are still a long way off. There is no licensed vaccine and our dispensary of affordable, effective drugs is in danger of being depleted in the short term owing to increased drug resistance. The only solution currently is to resort to drug combinations coupled to insecticide spraying and/or the distribution of insecticide-treated bed nets. A number of novel drug targets have been identified and/or validated, and are being pursued for the development of new drugs. However, it is obvious from the nearly 60% of hypothetical proteins in the parasite genome that have not yet been annotated, that relatively little of the biology of the parasite is known compared to the biology of for example, humans, yeast or plants [1]. The potential for the discovery of new and better drug targets is thus considerable. Bioinformatics tools are useful in characterizing specific properties of selected proteins and can even suggest possible functions of hypothetical proteins. However, protein function and structural properties can only be confidently inferred from biochemical and cell biological experimentation, whilst the design of inhibitors and evaluation of their interaction with the protein of interest are ultimately dependent on the availability of soluble and functional proteins. It is widely accepted that a specific protein of interest can only in rare instances be isolated in sufficient quantities from the natural host cell for downstream studies. Heterologous expression of the selected protein is therefore of paramount importance. This review highlights the properties that have been associated with difficult-to-express plasmodial proteins and provides insights into the variety of options available for the heterologous expression of malaria parasite proteins for structural and functional annotation studies.Escherichia coli is still the preferred host for the heterologous expression of recombinant proteins du
|