|
Malaria Journal 2008
Interaction of an atypical Plasmodium falciparum ETRAMP with human apolipoproteinsAbstract: A modified yeast two-hybrid methodology that preferentially selects protein fragments that can be expressed in yeast was used to conduct high-throughput screens with P. falciparum protein fragments against human liver and cerebellum libraries. The resulting dataset was analyzed to exclude interactions that are not likely to occur in the human host during infection.An initial set of 2,200 interactions was curated to remove proteins that are unlikely to play a role in pathogenesis based on their annotation or localization, and proteins that behave promiscuously in the two-hybrid assay, resulting in a final dataset of 456 interactions. A cluster that implicates binding between P. falciparum PFE1590w/ETRAMP5, a putative parasitophorous vacuole membrane protein, and human apolipoproteins ApoA, ApoB and ApoE was selected for further analysis. Different isoforms of ApoE, which are associated with different outcomes of malaria infection, were shown to display differential interactions with PFE1590w.A dataset of interactions between proteins of P. falciparum and those of its human host was generated. The preferential interaction of the P. falciparum PFE1590w protein with the human ApoE ε3 and ApoE ε4 isoforms, but not the ApoE ε2 isoform, supports the hypothesis that ApoE genotype affects risk of malaria infection. The dataset contains other interactions of potential relevance to disease that may identify possible vaccine candidates and drug targets.Malaria is a devastating global disease, responsible for approximately 500 million clinical cases and more than a million deaths per year [1]. The most deadly form is caused by Plasmodium falciparum, which has a complex life cycle. The parasite is delivered to the human bloodstream as sporozoites that develop in the salivary gland of infected mosquitoes. These motile forms enter the liver, transversing through several cells before establishing themselves in a hepatocyte. Within the hepatocyte, the parasite undergoes a large numbe
|