全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Relevant microclimate for determining the development rate of malaria mosquitoes and possible implications of climate change

DOI: 10.1186/1475-2875-9-196

Full-Text   Cite this paper   Add to My Lib

Abstract:

Water temperatures in three different-sized water pools, as well as the adjacent air temperature in lowland and highland sites in western Kenya were monitored. Both air and water temperatures were fed into a widely-applied temperature-dependent development model for Anopheles gambiae immatures, and subsequently their impact on predicted vector abundance was assessed.Mean water temperature in typical mosquito breeding sites was 4-6°C higher than the mean temperature of the adjacent air, resulting in larval development rates, and hence population growth rates, that are much higher than predicted based on air temperature. On the other hand, due to the non-linearities in the relationship between temperature and larval development rate, together with a marginal buffering in the increase in water temperature compared with air temperature, the relative increases in larval development rates predicted due to climate change are substantially less.Existing models will tend to underestimate mosquito population growth under current conditions, and may overestimate relative increases in population growth under future climate change. These results highlight the need for better integration of biological and environmental information at the scale relevant to mosquito biology.The last few decades have seen a marked resurgence of malaria in the East African highlands [reviewed in [1]]. The reasons for this increase in seasonal malaria are not yet fully resolved but one factor that has been widely debated is the possible influence of regional warming due to climate change [2-7]. Amongst the studies supporting a climate-driven response, Pascual et al [3] used a temperature-dependent population dynamic model to demonstrate that a small change in mean ambient air temperature of just 0.5°C could translate into a 30-100% increase in mosquito abundance [see also [8]]. One of the reasons for this pronounced biological amplification is the strongly non-linear effects of temperature on mosquito

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133