全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Spatiotemporal distribution of malaria and the association between its epidemic and climate factors in Hainan, China

DOI: 10.1186/1475-2875-9-185

Full-Text   Cite this paper   Add to My Lib

Abstract:

The cumulative and annual malaria incidences of each county were calculated and mapped from 1995 to 2008 to show the spatial distribution of malaria in Hainan. The annual and monthly cumulative malaria incidences of the province between 1995 and 2008 were calculated and plotted to observe the annual and seasonal fluctuation. The Cochran-Armitage trend test was employed to explore the temporal trends in the annual malaria incidences. Cross correlation and autocorrelation analyses were performed to detect the lagged effect of climate factors on malaria transmission and the auto correlation of malaria incidence. A multivariate time series analysis was conducted to construct a model of climate factors to explore the association between malaria epidemics and climate factors.The highest malaria incidences were mainly distributed in the central-south counties of the province. A fluctuating but distinctly declining temporal trend of annual malaria incidences was identified (Cochran-Armitage trend test Z = -25.14, P < 0.05). The peak incidence period was May to October when nearly 70% of annual malaria cases were reported. The mean temperature of the previous month, of the previous two months and the number of cases during the previous month were included in the model. The model effectively explained the association between malaria epidemics and climate factors (F = 85.06, P < 0.05, adjusted R 2 = 0.81). The autocorrelations of the fitting residuals were not significant (P > 0.05), indicating that the model extracted information sufficiently. There was no significant difference between the monthly predicted value and the actual value (t = -1.91, P = 0.08). The R 2 for predicting was 0.70, and the autocorrelations of the predictive residuals were not significant (P > 0.05), indicating that the model had a good predictive ability.Public health resource allocations should focus on the areas and months with the highest malaria risk in Hainan. Malaria epidemics can be accurately

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133