全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Structural Health Monitoring of Precast Concrete Box Girders Using Selected Vibration-Based Damage Detection Methods

DOI: 10.1155/2010/280685

Full-Text   Cite this paper   Add to My Lib

Abstract:

Precast, prestressed concrete box girders are commonly used as superstructure components for short and medium span bridges. Their configuration and typical side-by-side placement make large portions of these elements inaccessible for visual inspection or the application of nondestructive testing techniques. This paper demonstrates that vibration-based damage detection (VBDD) is an effective alternative for monitoring their structural health. A box girder removed from a dismantled bridge was used to evaluate the ability of five different VBDD algorithms to detect and localize low levels of spalling damage, with a focus on using a small number of sensors and only the fundamental mode of vibration. All methods were capable of detecting and localizing damage to a region within approximately 1.6 times the longitudinal spacing between as few as six uniformly distributed accelerometers. Strain gauges configured to measure curvature were also effective, but tended to be susceptible to large errors in near support damage cases. Finite element analyses demonstrated that increasing the number of sensor locations leads to a proportional increase in localization accuracy, while the use of additional modes provides little advantage and can sometimes lead to a deterioration in the performance of the VBDD techniques. 1. Introduction Although there has been a growing awareness of the declining state of the civil infrastructure in North America for several decades, recent catastrophic bridge failures have highlighted both the severity of the problem as it relates to bridges, and the inadequacy of current inspection and monitoring practices to assess their condition [1]. More objective means for monitoring the structural health of bridges have been pursued for some time by the research community. While a number of local nondestructive evaluation (NDE) methods [2, 3] or global response-based methods [4–6] are either in current use or are at various stages of development, the application of a specific structural health monitoring (SHM) technique will be most successful when its capabilities are closely matched to the features and requirements of a particular bridge component. Vibration-based damage detection (VBDD) may be particularly well-suited to assessing the condition of precast, prestressed concrete box girders. This type of girder is commonly employed as a superstructure component for short and medium span bridges. Available in standard cross sectional dimensions and lengths, they are typically used in simple span construction, with multiple units arranged

References

[1]  Federal Highway Administration, “Reliability of visual inspection,” Tech. Rep. FHWA-RD-01-020 and FHWA-RD-01-021, Federal Highway Administration, Washington, DC, USA, 2001.
[2]  L. Cartz, Non-Destructive Testing, ASM International, Materials Park, Ohio, USA, 1995.
[3]  B. Raj, T. Jayakumar, and M. Thavasimuthu, Practical Non-Destructive Testing, Narosa Publishing House, New Delhi, India, 2nd edition, 2002.
[4]  C. H. Jenkins, L. Kjerengtroen, and H. Oestensen, “Sensitivity of parameter changes in structural damage detection,” Shock and Vibration, vol. 4, no. 1, pp. 27–37, 1997.
[5]  J. L. Schulz, B. Commander, G. G. Goble, and D. M. Frangopol, “Efficient field testing and load rating of short- and medium-span bridges,” Structural Engineering Review, vol. 7, no. 3, pp. 181–194, 1995.
[6]  S. W. Doebling, C. R. Farrar, M. B. Prime, and D. W. Shevitz, “Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: a literature review,” Tech. Rep. LA 13070-MS, Los Alamos National Laboratory, Los Alamos, NM, USA, 1996.
[7]  Z. Zhou, L. D. Wegner, and B. F. Sparling, “Vibration-based detection of small-scale damage on a bridge deck,” Journal of Structural Engineering, vol. 133, no. 9, pp. 1257–1267, 2007.
[8]  S. W. Doebling, C. R. Farrar, and M. B. Prime, “A summary review of vibration-based damage identification methods,” Shock and Vibration Digest, vol. 30, no. 2, pp. 91–105, 1998.
[9]  H. Sohn, C. R. Farrar, F. M. Hemez, D. D. Shunk, D. W. Stinemates, and B. R. Nadler, “A review of structural health monitoring literature: 1996–2001,” Tech. Rep. LA-13976-MS, Los Alamos National Laboratory, Los Alamos, NM, USA, 2003.
[10]  P. Cawley and R. D. Adams, “The location of defects in structures from measurements of natural frequencies,” The Journal of Strain Analysis for Engineering Design, vol. 14, no. 2, pp. 49–57, 1979.
[11]  O. S. Salawu, “Detection of structural damage through changes in frequency: a review,” Engineering Structures, vol. 19, no. 9, pp. 718–723, 1997.
[12]  B. Peeters, System identification and damage detection in civil engineering, Ph.D. thesis, Department of Civil Engineering, Katholieke Universiteit Leuven, Leuven, Belgium, 2000.
[13]  C. H. J. Fox, “The location of defects in structures: a comparison of the use of natural frequency and mode shape data,” in Proceedings of the 10th International Modal Analysis Conference, pp. 522–528, Society of Experimental Mechanics, Bethel, Conn, USA, 1992.
[14]  O. S. Salawu and C. Williams, “Damage location using vibration mode shapes,” in Proceedings of the 12th International Modal Analysis Conference, pp. 933–939, Society of Experimental Mechanics, Bethel, Conn, USA, 1994.
[15]  A. K. Pandey, M. Biswas, and M. M. Samman, “Damage detection from changes in curvature mode shapes,” Journal of Sound and Vibration, vol. 145, no. 2, pp. 321–332, 1991.
[16]  Z. Zhang and A. E. Aktan, “The damage indices for constructed facilities,” in Proceedings of the 13th International Modal Analysis Conference, pp. 1520–1529, Society of Experimental Mechanics, Bethel, Conn, USA, 1995.
[17]  A. K. Pandey and M. Biswas, “Damage detection in structures using changes in flexibility,” Journal of Sound and Vibration, vol. 169, no. 1, pp. 3–17, 1994.
[18]  D. C. Zimmerman and M. Kaouk, “Structural damage detection using a minimum rank update theory,” Journal of Vibration and Acoustics, vol. 116, no. 2, pp. 222–231, 1994.
[19]  J.-T. Kim and N. Stubbs, “Model-uncertainty impact and damage-detection accuracy in plate girder,” Journal of Structural Engineering, vol. 121, no. 10, pp. 1409–1417, 1995.
[20]  J.-T. Kim and N. Stubbs, “Nondestructive crack detection algorithm for full-scale bridges,” Journal of Structural Engineering, vol. 129, no. 10, pp. 1358–1366, 2003.
[21]  P. Hajela and F. J. Soeiro, “Recent developments in damage detection based on system identification methods,” Structural Optimization, vol. 2, no. 1, pp. 1–10, 1990.
[22]  J. R. Casas and A. C. Aparicio, “Structural damage identification from dynamic-test data,” Journal of Structural Engineering, vol. 120, no. 8, pp. 2437–2449, 1994.
[23]  C. R. Farrar and T. A. Duffey, “Vibration-based damage detection in rotating machinery,” Key Engineering Materials, vol. 167, pp. 224–235, 1999.
[24]  D. L. Hunt, S. P. Weiss, W. M. West, T. A. Dunlap, and S. R. Freesmeyer, “Development and implementation of a shuttle modal inspection system,” Sound and Vibration, vol. 24, no. 8, pp. 34–42, 1990.
[25]  T. Toksoy and A. E. Aktan, “Bridge-condition assessment by modal flexibility,” Experimental Mechanics, vol. 34, no. 3, pp. 271–278, 1994.
[26]  C. R. Farrar, W. E. Baker, T. M. Bell, et al., “Dynamic characterization and damage detection in the I-40 bridge over the Rio Grande,” Tech. Rep. LA 12767-MS, Los Alamos National Laboratory, Los Alamos, NM, USA, 1994.
[27]  D. V. Jauregui and C. R. Farrar, “Comparison of damage identification algorithms on experimental modal data from a bridge,” in Proceedings of the 14th International Modal Analysis Conference, pp. 1423–1429, Society of Experimental Mechanics, Bethel, Conn, USA, 1996.
[28]  Z. Zhang and A. E. Aktan, “Application of modal flexibility and its derivatives in structural identification,” Research in Nondestructive Evaluation, vol. 10, no. 1, pp. 43–61, 1998.
[29]  F. N. Catbas and A. E. Aktan, “Condition and damage assessment: issues and some promising indices,” Journal of Structural Engineering, vol. 128, no. 8, pp. 1026–1036, 2002.
[30]  A. B. Siddique, B. F. Sparling, and L. D. Wegner, “Assessment of vibration-based damage detection for an integral abutment bridge,” Canadian Journal of Civil Engineering, vol. 34, no. 3, pp. 438–452, 2007.
[31]  B. Peeters, J. Maeck, and G. De Roeck, “Vibration-based damage detection in civil engineering: excitation sources and temperature effects,” Smart Materials and Structures, vol. 10, no. 3, pp. 518–527, 2001.
[32]  LabView, LabViewTM—version 6i, National Instruments Corporation, Austin, Tex, USA, 2000.
[33]  R. Ramirez, The FFT: Fundamentals and Concepts, Prentice-Hall, Englewood Cliffs, NJ, USA, 1985.
[34]  M. E. Mortenson, Mathematics for Computer Graphics Applications, Industrial Press, New York, NY, USA, 1999.
[35]  ANSYS, ANSYS User's Manual—version 7.1, ANSYS Inc., Canonsburg, Pa, USA, 2003.
[36]  D. J. Ewins, Modal Testing: Theory, Practice and Applications, Research Studies Press, Hertfordshire, UK, 2nd edition, 2000.
[37]  Y. K. Ho and D. J. Ewins, “On the structural damage identification with mode shapes,” in Proceedings of the European COST F3 Conference on System Identification and Structural Health Monitoring, pp. 677–686, Madrid, Spain, 2000.
[38]  N. Stubbs, Y. I. Kim, and C. R. Farrar, “Field verification of a nondestructive damage localization and severity estimation algorithm,” in Proceedings of the 13th International Modal Analysis Conference, pp. 210–218, Society of Experimental Mechanics, Bethel, Conn, USA, 1995.
[39]  C. R. Farrar and D. A. Jauregui, “Comparative study of damage identification algorithms applied to a bridge: I. Experiment,” Smart Materials and Structures, vol. 7, no. 5, pp. 704–719, 1998.
[40]  S. Choi, S. Park, and N. Stubbs, “Nondestructive damage detection in structures using changes in compliance,” International Journal of Solids and Structures, vol. 42, no. 15, pp. 4494–4513, 2005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133