|
Malaria Journal 2006
Effective population size of Anopheles funestus chromosomal forms in Burkina FasoAbstract: Short-term Ne was estimated by evaluating variation at 16 microsatellite loci across temporal samples collected annually from 2000–2002. Estimates were based on standardized variance in allele frequencies or a maximum likelihood method. Long-term Ne was estimated from genetic diversity estimates using mtDNA sequences and microsatellites.For both forms, short-term and long-term Ne estimates were on the order of 103 and 105, respectively. Long-term Ne estimates were larger when based on loci from chromosome 3R (both inside and outside of inversions) than loci outside of this arm.Ne values indicate that An. funestus is not subject to seasonal bottlenecks. Though not statistically different because of large and overlapping confidence intervals, short-term Ne estimates were consistently smaller for Kiribina than Folonzo, possibly due to exploitation of different breeding sites: permanent for Folonzo and intermittent for Kiribina. The higher long-term Ne estimates on 3R, the arm carrying the two inversions mainly responsible for defining the chromosomal forms, give natural selection broader scope and merit further study.The efficient application of malaria control methods that target the mosquito vector depends upon knowledge of its population genetic structure. This information can improve current insecticide-based strategies and aid in the management of insecticide resistance, but it is also essential to future genetic control or modification strategies that aim to reduce, eliminate or replace vector populations with non-vectors. Unfortunately, present understanding of the population structure of any malaria vector is insufficient to underpin a genetic control programme, and nowhere is this shortfall more critical than in sub-Saharan Africa where three widespread species (Anopheles gambiae, Anopheles arabiensis and Anopheles funestus) are responsible for transmitting most of the 1–3 million fatal cases each year [1].An. funestus, one of the most anthropophilic vectors k
|