|
Malaria Journal 2011
Limited response of NK92 cells to Plasmodium falciparum-infected erythrocytesAbstract: NK92 cells were assessed for several signs of activation and cytotoxicity due to contact to parasites and were as well examined by oligonucleotide microarrays for an insight on the impact P. falciparum-infected erythrocytes have on their transcriptome. To address the parasite side of such interaction, growth inhibition assays were performed including non-NK cells as controls.By performing microarrays with NK92 cells, the impact of parasites on a transcriptional level was observed. The findings show that, although not evidently activated by iRBCs, NK92 cells show transcriptional signs of priming and proliferation. In addition, decreased parasitaemia was observed due to co-incubation with NK92 cells. However, such effect might not be NK-specific since irrelevant cells also affected parasite growth in vitro.Although NK92 cells are here shown to behave as poor models for the NK immune response against parasites, the results obtained in this study may be of use for future investigations regarding host-parasites interactions in malaria.More than any other disease restricted to tropical areas, malaria has a widespread impact and is considered one of the main public health problems in the world. The disease causes thousands of deaths annually and its burden continues to grow especially in areas of poverty.The human immune system fails to completely eliminate malarial infections and the reason for this is still not known. Nevertheless, it is clear that immunity to malaria involves the innate and adaptive arms of the immune system, engaging macrophages, dendritic cells, γδT cells, Natural Killer T (NKT) and NK cells to participate in the response developed by the host against parasites [1,2]. Natural killer lymphocytes are thought to play an important role in combating infections. Without requiring clonal expansion ("naturally") and balanced by a repertoire of activating and inhibitory receptors, these cells are promptly triggered to develop their biological functions: cytoto
|