|
On Oscillatory Pattern of Malaria Dynamics in a Population with Temporary ImmunityDOI: 10.1080/17486700701529002 Abstract: We use a model to study the dynamics of malaria in the human and mosquito population to explain the stability patterns of malaria. The model results show that the disease-free equilibrium is globally asymptotically stable and occurs whenever the basic reproduction number, R0 is less than unity. We also note that when R0>1, the disease-free equilibrium is unstable and the endemic equilibrium is stable. Numerical simulations show that recoveries and temporary immunity keep the populations at oscillation patterns and eventually converge to a steady state.
|