Spatiotemporal compression of ultrashort pulses is one of the key issues of chirped pulse amplification ( CPA), the most common method to achieve high intensity laser beams. Successful shaping of the temporal envelope and recombination of the spectral components of the broadband pulses need careful alignment of the stretcher-compressor stages. Pulse parameters are required to be measured at the target as well. Several diagnostic techniques have been developed so far for the characterization of ultrashort pulses. Some of these methods utilize nonlinear optical processes, while others based on purely linear optics, in most cases, combined with spectrally resolving device. The goal of this work is to provide a review on the capabilities and limitations of the latter category of the ultrafast diagnostical methods. We feel that the importance of these powerful, easy-to-align, high-precision techniques needs to be emphasized, since their use could gradually improve the efficiency of different CPA systems. We give a general description on the background of spectrally resolved linear interferometry and demonstrate various schematic experimental layouts for the detection of material dispersion, angular dispersion and carrier-envelope phase drift. Precision estimations and discussion of potential applications are also provided.
References
[1]
Lamb, W.E. Theory of an optical maser. Phys. Rev. 1964, 134, A1429–A1450, doi:10.1103/PhysRev.134.A1429.
[2]
Hargrove, L.E.; Fork, R.L.; Pollack, M.A. Locking of He-Ne laser modes induced by synchronus intracavity modulation. Appl. Phys. Lett. 1964, 5, 4–5, doi:10.1063/1.1754025.
Fork, R.L.; Greene, B.I.; Shank, C.V. Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking. Appl. Phys. Lett. 1981, 38, 671–672, doi:10.1063/1.92500.
[5]
Valdmanis, J.A.; Fork, R.L.; Gordon, J.P. Generation of optical pulses as short as 27 femtoseconds directly from a laser balancing self-phase modulation, group-velocity dispersion, saturable absorption, and saturable gain. Opt. Lett. 1985, 10, 131–133, doi:10.1364/OL.10.000131.
[6]
Fork, R.L.; Brito Cruz, C.H.; Becker, P.C.; Shank, C.V. Compression of optical pulses to six femtoseconds by using cubic phase compensation. Opt. Lett. 1987, 12, 483–486, doi:10.1364/OL.12.000483.
[7]
Moulton, P.F. Spectroscopic and laser characteristics of Ti:Al2O3. J. Opt. Soc. B 1982, 3, 125–133, doi:10.1364/JOSAB.3.000125.
[8]
Spence, D.E.; Kean, P.N.; Sibbett, W. 60-fsec pulse generation from a self-mode-locked Ti:sapphire laser. Opt. Lett. 1991, 16, 42–44, doi:10.1364/OL.16.000042.
[9]
Piché, M. Beam reshaping and self-mode-locking in nonlinear laser resonators. Opt. Comm. 1991, 86, 156–160, doi:10.1016/0030-4018(91)90552-O.
[10]
Sutter, D.H.; Steinmeyer, G.; Gallmann, L.; Matuschek, N.; Morier-Genoud, F.; Keller, U.; Scheuer, V.; Angelow, G.; Tschudi, T. Semiconductor saturable-absorber mirror assisted Kerr-lens mode-locked Ti:sapphire laser producing pulses in the two-cycle regime. Opt. Lett. 1999, 24, 631–633, doi:10.1364/OL.24.000631.
[11]
Morgner, U.; K?rtner, F.X.; Cho, S. H.; Chen, Y.; Haus, H.A.; Fujimoto, J.G.; Ippen, E.P.; Scheuer, V.; Angelow, G.; Tschudi, T. Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser. Opt. Lett. 1999, 24, 411–413, doi:10.1364/OL.24.000411.
[12]
Strickland, D.; Mourou, G. Compression of amplified chirped optical pulses. Opt. Comm. 1985, 55, 447–449, doi:10.1016/0030-4018(85)90151-8.
[13]
Treacy, E. Optical pulse compression with diffraction gratings. IEEE J. Quant. El. 1969, 5, 454–458, doi:10.1109/JQE.1969.1076303.
[14]
Martinez, O. E. Grating and prism compressors in the case of finite beam Size. J. Opt. Soc. Am. B 1986, 3, 929–934, doi:10.1364/JOSAB.3.000929.
[15]
Martinez, O.E. Design of high-power ultrashort pulse amplifiers by expansion and recompression. IEEE J. of Quant. El. 1987, 23, 1385–1387, doi:10.1109/JQE.1987.1073518.
[16]
Diels, J.C.M.; Fontaine, J.J.; McMichael, I.C.; Simoni, F. Control and measurement of ultrashort pulse shapes (in amplutude and phase) with femtosecond accuracy. Appl. Opt. 1985, 24, 1270–1282, doi:10.1364/AO.24.001270.
[17]
Trebino, R.; Kane, J.D. Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating. J. Opt. Soc. Am. A 1993, 10, 1101–1111, doi:10.1364/JOSAA.10.001101.
[18]
Iaconis, C.; Walmsley, I.A. Spectral phase interferometry for direct electric-field reconstruction of ultrashort pulses. Opt. Lett. 1998, 23, 792–794, doi:10.1364/OL.23.000792.
[19]
Diels, J.C.; Rudolph, W. Ultrashort Laser Pulse Phenomena, 2nd ed.; Academic Press: Burlington, MA, USA, 2006.
Walmsley, I.A.; Dorrer, C. Characterization of utlrashort electromagnetic pulses. Adv. Opt. Phot. 2009, 1, 308–437, doi:10.1364/AOP.1.000308.
[22]
Forget, N.; Crozatier, V.; Oksenhendler, T. Pulse-measurement techniques using a single amplitude and phase spectral shaper. J. Opt. Soc. Am. B. 2010, 27, 742–756, doi:10.1364/JOSAB.27.000742.
[23]
Prein, S.; Diddams, S.; Diels, J.-C. Complete characterrization of femtosecond pulses using an all-electronic detector. Opt. Comm. 1996, 123, 567–573, doi:10.1016/0030-4018(95)00656-7.
Born, M.; Wolf, E. Principles of Optics, 7th ed.; Cambridge University Press: Cambridge, UK, 1999.
[27]
Jenkins, F.A.; White, H. E. Fundamentals of Optics, 7th ed.; McGraw-Hill: New York, NY, USA, 2001.
[28]
Varjú, K.; Kovács, A.P.; Osvay, K.; Kurdi, G. Angular dispersion of femtosecond pulses in a Gaussian beam. Opt. Lett. 2002, 27, 2034–2036, doi:10.1364/OL.27.002034.
[29]
Martinez, O.E.; Gordon, J.P.; Fork, R.L. Negative group-velocity dispersion using refraction. J. Opt. Soc. Am. A 1984, 1, 1003–1006, doi:10.1364/JOSAA.1.001003.
[30]
Bor, Z.; Rácz, B. Group Velocity Dispersion in prisms and its application to pulse compression and travelling-wave excitation. Opt. Comm. 1985, 54, 165–170, doi:10.1016/0030-4018(85)90284-6.
[31]
Hebling, J. Derivation of the pulse front tilt caused by angular dispersion. Opt. and Quant. El. 1996, 28, 1759–1763, doi:10.1007/BF00698541.
[32]
Gu, X.; Akturk, S.; Trebino, R. Spatial chirp in ultrafast optics. Opt. Comm. 2004, 242, 599–604, doi:10.1016/j.optcom.2004.09.004.
[33]
Akturk, S.; Gu, X.; Gabolde, P.; Trebino, R. The general therory of first-order spatio-temporal distortions of Gaussian pulses and beams. Opt. Exp. 2005, 13, 8642–8661, doi:10.1364/OPEX.13.008642.
[34]
Puccianti, L. Dispersione anomala della ossiemoglobina(in Italian). Il Nuovo Cimento 1901, 2, 257–264, doi:10.1007/BF02717711.
[35]
Roschdestwensky, D. Anomale dispersion im natriumdampf(in German). Annalen der Physik (Leipzig) 1912, 344, 307–345, doi:10.1002/andp.19123441203.
Kim, H.J.; James, B.W. The use of Fourier transfom techniques for the analysis of hook interferograms. Opt. Comm. 1995, 118, 542–545, doi:10.1016/0030-4018(95)00205-M.
[38]
Bauer, J. Die Dispersion des Phasensprungs bei der Lichtreflexion an Dünnen Metallschichten(in German). Annalen der Physik 1934, 412, 481–501, doi:10.1002/andp.19344120504.
[39]
Bruce, C.F.; Ciddor, P.E. Phase dispersion in multilayer films. J. Opt. Soc. Am. 1960, 50, 295–299, doi:10.1364/JOSA.50.000295.
[40]
Szip?cs, R.; Ferencz, K.; Spielmann, C.; Krausz, F. Chirped multilayer coatings for broadband dispersion control in femtosecond lasers. Opt. Lett. 1994, 19, 201–203, doi:10.1364/OL.19.000201.
[41]
Stingl, A.; Spielmann, C.; Krausz, F.; Szip?cs, R. Generation of 11-fs pulses from a Ti:sapphire laser without the use of prisms. Opt. Lett. 1994, 19, 204–207, doi:10.1364/OL.19.000204.
[42]
Kovács, A.P.; Osvay, K.; Bor, Z.; Szip?cs, R. Group-delay measurement on laser mirrors by sperctrally resolved white-light interferometry. Opt. Lett. 1995, 20, 788–790, doi:10.1364/OL.20.000788.
[43]
Kovács, A.P.; Varjú, K.; Osvay, K.; Bor, Z. On the formation of white-light interference fringes. Am. J. Phys. 1998, 66, 985–989, doi:10.1119/1.19068.
[44]
Sáinz, C.; Calatroni, J.E.; Tribillon, G. Refractrometry of liquid samples with spectrally resolved white light interferomerty. Meas. Sci. Tech. 1990, 1, 356–361, doi:10.1088/0957-0233/1/4/008.
[45]
Meshulach, D.; Yelin, D.; Silberberg, Y. White light dispersion measurements by one- and two-dimensional spectral interference. IEEE J. Quant. El. 1997, 33, 1969–1974, doi:10.1109/3.641311.
[46]
Baltu?ka, A.; Kobayashi, T. Adaptive shaping of two-cycle visible pulses using a flexible mirror. Appl. Phys. B 2002, 75, 427–443, doi:10.1007/s00340-002-1008-3.
[47]
Misawa, K.; Kobayashi, T. Femtosecond Sagnac interferometer for phase spectroscopy. Opt. Lett. 1995, 20, 1550–1552, doi:10.1364/OL.20.001550.
[48]
Kovács, A.P.; Osvay, K.; Kurdi, G.; G?rbe, M.; Klebniczki, J.; Bor, Z. Dispersion control of a pulse stretcher-compressor system with two-dimensional spectral interferometry. Appl. Phys. B 2005, 80, 165–170, doi:10.1007/s00340-004-1706-0.
[49]
Meshulach, D.; Yelin, D.; Silberberg, Y. Real-time spatial-spectral interference measurements of ultrashort optical pulses. J. Opt. Soc. Am. B 1997, 14, 2095–2098, doi:10.1364/JOSAB.14.002095.
[50]
Parys, B.; Allard, J.-F.; Morris, D.; Pépin, C.; Houde, D.; Cornet, A. Assessment of the spectral interference method applied to the stretching measurement of diffused laser pulses. J. Opt. A: Pure Appl. Opt. 2005, 7, 249–254, doi:10.1088/1464-4258/7/5/006.
[51]
Bowlan, P.; Gabolde, P.; Shreenath, A.; McGresham, K.; Trebino, R.; Akturk, S. Crossed-beam spectral interferometry: a simple, high-spectral-resolution method for completely characterizing complex ultrashort pulses in real time. Opt. Exp. 2006, 14, 11892–11900, doi:10.1364/OE.14.011892.
[52]
Osvay, K.; Varjú, K.; Kurdi, G. High order dispersion control for femtosecond CPA lasers. Appl. Phys. B 2007, 89, 565–572, doi:10.1007/s00340-007-2838-9.
[53]
Osvay, K.; Mero, M.; Borzsonyi, A.; Kovács, A.P.; Kalashnikov, M.P. Spectral phase shift and residual angular dispersion of an acousto-optic programmable dispersive filter. Appl. Phys. B 2011, 107, 125–130.
[54]
Pupeza, I.; Gu, X.; Fill, E.; Eidam, T.; Limpert, J.; Tünnermann, A.; Krausz, F.; Udem, T. Highly sensitive dispersion measurement of a high-power passive optical resonator using spatial-spectral interferometry. Opt. Exp. 2010, 18, 26184–26195.
[55]
Raz, O.; Schwartz, O.; Austin, D.; Wyatt, A.S.; Schavi, A.; Smirnova, O.; Nadler, B.; Walmsley, I.A.; Oron, D.; Dudovich, N. Vectorial phase retrival for linear characterization of attosecond pulses. Phys.Rev. Lett. 2011, 107, doi:10.1103/PhysRevLett.107.133902.
[56]
Diddams, S.A.; Bartels, A.; Ramond, T.M.; Oates, C.W.; Bize, S.; Curtis, E.A.; Bergquist, J.C.; Hollberg, L. Design and control of femtosecond lasers for optical clocks and the synthesis of low-noise optical and microwave signals. IEEE J. Sel. T. Quant. El. 2003, 9, 1072–1080, doi:10.1109/JSTQE.2003.819096.
[57]
Borzsonyi, A.; Kovács, A.P.; G?rbe, M.; Osvay, K. Advances and limitations of phase dispersion measurement by spectrally and spatially resolved interferometry. Opt. Comm. 2008, 281, 3051–3061, doi:10.1016/j.optcom.2008.02.002.
[58]
Kosik, E.M.; Radunsky, A.S.; Walmsley, I.A.; Dorrer, C. Interferometric technique for measuring broadband ultrashort pulses at the sampling limit. Opt. Lett. 2005, 30, 326–328, doi:10.1364/OL.30.000326.
[59]
Wyatt, A.S.; Walmsley, I.A.; Stibenz, G.; Steinmeyer, G. Sub-10 fs pulse characterization using spatially encoded arrangement for spectral phase interferometry for direct electric field reconstruction. Opt. Lett. 2006, 31, 1914–1916, doi:10.1364/OL.31.001914.
[60]
Dorrer, C.; Kosik, E.M.; Walmsley, I.A. Direct space-time characterization of the electric fields of ultrashort optical pulses. Opt. Lett. 2002, 27, 548–550, doi:10.1364/OL.27.000548.
[61]
Dorrer, C.; Walmsley, I.A. Simple linear technique for the measurement of space-time coupling in ultrashort optical pulses. Opt. Lett. 2002, 27, 1947–1949, doi:10.1364/OL.27.001947.
[62]
Cormier, E.; Walmsley, I.A.; Kosik, E.M.; Wyatt, A.S.; Corner, L.; DiMauro, L. Self-referencing, spectrally, or spatially encoded spectral interferometry for the complete characterization of attosecond electromagnetic pulses. Phys. Rev. Lett. 2005, 94, doi:10.1103/PhysRevLett.94.033905.
[63]
Froehly, C.; Lacourt, A.; Viénot, J.C. Notions de réponse impulsionnelle et de fonction de transfere temporelles de pupilles optiques, justifications expérimentales et applications (in French). Nouv. Rev. d'Opt. 1973, 4, 183–186, doi:10.1088/0335-7368/4/4/301.
[64]
Lepetit, L.; Chériaux, G.; Joffre, M. Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy. J. Opt. Soc. Am. B 1995, 12, 2467–2474, doi:10.1364/JOSAB.12.002467.
[65]
Dorrer, C.; Salin, F.; Verluise, F.; Huignard, J.P. Programmable phase control of femtosecond pulses by use of nonpixelated spatial light modulator. Opt. Lett. 1998, 23, 709–711, doi:10.1364/OL.23.000709.
[66]
Dorrer, C.; Belabas, N.; Likforman, J-P.; Joffre, M. Experimental implementation of Fourier-transform spectral interferometry and its application to the study of spectrometers. Appl. Phys. B 2000, 70, S99–S107, doi:10.1007/s003400000333.
[67]
Dorrer, C. Influence of the calibration of the detector on spectral interferometry. J. Opt. Soc. Am. B 1999, 16, 1160–1168, doi:10.1364/JOSAB.16.001160.
[68]
Dorrer, C.; Belabas, N.; Likforman, J.-P.; Joffre, M. Spectral resolution and sampling issues in Fourier-transform spectral interferometry. J. Opt. Soc. Am. B 2000, 17, 1795–1802, doi:10.1364/JOSAB.17.001795.
[69]
Jasapara, J.; Rudolph, W. Characterization of sub-10-fs pulse focusing with high-numerical-aperture microscope objectives. Opt. Lett. 1999, 24, 777–779, doi:10.1364/OL.24.000777.
[70]
Bera, S.; Sabbah, A.J.; Durfee, C.G.; Squier, J.A. Development of a femtosecond micromachining workstation by use of spectral interferometry. Opt. Lett. 2005, 30, 373–375, doi:10.1364/OL.30.000373.
[71]
Amir, W.; Planchon, T.A.; Durfee, C.G.; Squier, J.A.; Gabolde, P.; Trebino, R.; Müller, M. Simultaneous visualization of spatial and chromatic aberrations by two-dimensional Fourier transform spectral interferometry. Opt. Lett. 2006, 31, 2927–2929, doi:10.1364/OL.31.002927.
[72]
Amir, W.; Planchon, T.A.; Durfee, C.G.; Squier, J.A. Complete characterization of a spatiotemporal pulse shaper with two-dimensional Fourier transform spectral interferometry. Opt. Lett. 2007, 32, 939–941.
[73]
Hlubina, P. Group velocity dispersion in fused-silica sample measured using white-light interferometry with the equalization wavelength determination. Optik 2002, 3, 149–152, doi:10.1078/0030-4026-00137.
[74]
Deng, Y.; Yang, W.; Zhou, C.; Wang, X.; Tao, J.; Kong, W.; Zhang, Z. Direct measurement of group delay with joint time-frequency analysis of a white-light spectral interferogram. Opt. Lett. 2008, 33, 2855–2857, doi:10.1364/OL.33.002855.
[75]
Sainz, C.; Jourdain, P.; Escalona, R.; Calatroni, J. Real time interferometric measurements of dispersion curves. Opt. Comm. 1994, 111, 632–641, doi:10.1016/0030-4018(94)90541-X.
[76]
Calatroni, J.; Sáinz, C.; Escalona, R. Stationary phase in spectrally resolved white light interferometry as a refractometry tool. J. Opt. A: Pure Appl. Opt. 2003, 5, S207–S210, doi:10.1088/1464-4258/5/5/366.
[77]
Shang, H.T. Chromatic dispersion measurement by wight-light interferometry on metre-length single-mode optical fibers. Electron. Lett. 1981, 17, 603–605, doi:10.1049/el:19810424.
[78]
Simohamed, L.M.; Reynaud, F. Characterisation of the dispersion evolution versus stretching in a large stroke optical fibre delay line. Opt. Comm. 1999, 159, 118–128, doi:10.1016/S0030-4018(98)00579-3.
[79]
Hlubina, P.; Szpulak, M.; Ciprian, D.; Martynkien, T.; Urbanczyk, W. Measurement of the group dispersion of the fundamental mode of holey fiber by white-light spectral interferometry. Opt. Express 2007, 15, 11073–11081, doi:10.1364/OE.15.011073.
[80]
Kumar, V.N.; Rao, D.N. Using interference in the frequency domain for precise determination of thickness and refractive indices of normal dispersive materials. J. Opt. Soc. Am. B 1995, 12, 1559–1563, doi:10.1364/JOSAB.12.001559.
[81]
Birchby, W.N. White-light interference fringes with a thick glass plate in one path. Proc. Natl. Acad. Sci. 1927, 13, 216–221, doi:10.1073/pnas.13.4.216.
[82]
Goulielmakis, E.; Schultze, M.; Hofstetter, M.; Yakovlev, V.S.; Gagnon, J.; Uiberacker, M.; Aquila, A.L.; Gullikson, E.M.; Attwood, D.T.; Kienberger, R.; et al. Single-cycle nonlinear optics. Nature 2008, 320, 1614–1617.
[83]
Corkum, P.B. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 1993, 71, 1994–1997, doi:10.1103/PhysRevLett.71.1994.
[84]
Christov, I.P.; Murnane, M.M.; Kapteyn, H.C. High-harmonic generation of attosecond pulses in the “single-cycle” regime. Phys. Rev. Lett. 1997, 78, 1251–1254.
Xu, L.; Spielmann, C.; Poppe, A.; Brabec, T.; Krausz, F.; H?nsch, T.W. Route to phase control of ultrashort light pulses. Opt. Lett. 1996, 21, 2008.
[91]
Telle, H.R.; Steinmeyer, G.; Dunlop, A.E.; Stenger, J.; Sutter, D.H.; Keller, U. Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation. Appl. Phys. B 1999, 69, 327–332, doi:10.1007/s003400050813.
[92]
Fuji, T.; Apolonski, A.; Krausz, F. Self-stabilization of carrier-envelope offset phase by use of difference-frequency generation. Opt. Lett. 2004, 29, 632.
[93]
Koke, S.; Grebing, C.; Frei, H.; Anderson, A.; Assion, A.; Steinmeyer, G. Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise. Nat. Phot. 2010, 4, 462–465.
[94]
Borchers, B.; Koke, S.; Husakou, A.; Herrmann, J.; Steinmeyer, G. Carrier-envelope phase stabilization with sub-10 attosecond residual timing jitter. Opt. Lett. 2011, 36, 4146–4148, doi:10.1364/OL.36.004146.
[95]
Baum, P.; Lochbrunner, S.; Riedle, E. Carrier-envelope phase fluctuation of amplified femtosecond pulses: characterization with a simple spatial interference setup. Appl. Phys. B 2003, 77, 129–133, doi:10.1007/s00340-003-1236-1.
[96]
Osvay, K.; Canova, L.; Durfee, C.; Kovács, A.P.; Borzsonyi, A.; Albert, O.; Lopez Martens, R. Preservation of the carrier envelope phase during cross-polarized wave generation. Opt. Exp. 2009, 17, 22358–22365.
[97]
Osvay, K.; G?rbe, M.; Grebing, C.; Steinmeyer, G. Bandwidth-independent linear method for detection of the carrier-envelope offset phase. Opt. Lett. 2007, 32, 3095–3097, doi:10.1364/OL.32.003095.
[98]
Jójárt, P.; Borzsonyi, A.; Borchers, B.; Steinmeyer, G.; Osvay, K. Agile high-resolution linear interferometric method for carrier-envelope phase measurement. Opt. Lett. 2012, 17, 836–838.
[99]
Osvay, K.; Kurdi, G.; Hebling, J.; Bor, Z.; Kovács, A.P.; Szip?cs, R. Measurement of the group delay of laser mirrors by a Fabry-Perot interferometer. Opt. Lett. 1995, 20, 2339–2341, doi:10.1364/OL.20.002339.
[100]
Osvay, K.; Borzsonyi, A.; Kovács, A.P.; G?rbe, M.; Kurdi, G.; Kalashnikov, M.P. Dispersion of femtosecond laser pulses in beam pipelines from ambient pressure down to 0.1 mbar. Appl. Phys. B 2007, 87, 457–461, doi:10.1007/s00340-007-2623-9.
[101]
CEOLiT by CE Optics Kft. Available online: http://www.ceoptics.eu (accessed on 10/12/2012).
[102]
Chiche, R.; Soskov, V.; Variola, A.; Zomer, F.; Cormier, E.; Pinard, L.; Michel, C.; Flaminio, R.; Jójárt, P.; Borzsonyi, A.; Osvay, K. On the role of the carrier envelop phase of picosecond frequency combs with ultrahigh finesse Fabry-Perot cavities. Phys. Rev. Lett.. submitted for publication 2013.
[103]
Osvay, K.; Kovács, A.P.; Heiner, Z.; Kurdi, G.; Klebniczki, J.; Csatári, M. Angular dispersion and temporal change of femtosecond pulses from misaligned pulse compressors. IEEE J. Sel. T. Quant. El. 2004, 10, 213–220.
[104]
Borzsonyi, A.; Mangin-Thro, L.; Cheriaux, G.; Osvay, K. Two-dimensional single shot measurement of angular dispersion for compressor alignment. Opt. Lett. 2013, 38, 410–412, doi:10.1364/OL.38.000410.
[105]
Pretzler, G.; Kasper, A.; Witte, K.J. Angular chirp and tilted light pulses in CPA lasers. Appl. Phys. B 2000, 70, 1–9, doi:10.1007/s003400050001.
[106]
Varjú, K.; Kovács, A.P.; Kurdi, G.; Osvay, K. High-precision measurement of angular dispersion in a CPA laser. Appl. Phys. B 2002, 74, S259–S263, doi:10.1007/s00340-002-0882-z.
[107]
Sacks, Z.; Mourou, G.; Danielius, R. Adjusting pulse front tilt and pulse duration by use of a single-shot autocorrelator. Opt. Lett. 2001, 26, 462–464, doi:10.1364/OL.26.000462.
[108]
Sharma, A.K.; Patidar, R.K.; Raghuramaiah, M.; Naik, P.A.; Gupta, P.D. Measuring pulse-front tilt in ultrashort laser beams without ambiguity of its sign using single-shot tilted pulse-front autocorrelator. Opt. Exp. 2006, 14, 13131–13141, doi:10.1364/OE.14.013131.