全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Ultra-Intense, High Spatio-Temporal Quality Petawatt-Class Laser System and Applications

DOI: 10.3390/app3010214

Keywords: ultra-intense laser, chirped-pulse amplification, Ti:sapphire laser, high field science

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper reviews techniques for improving the temporal contrast and spatial beam quality in an ultra-intense laser system that is based on chirped-pulse amplification (CPA). We describe the design, performance, and characterization of our laser system, which has the potential for achieving a peak power of 600 TW. We also describe applications of the laser system in the relativistically dominant regime of laser-matter interactions and discuss a compact, high efficiency diode-pumped laser system.

References

[1]  Strickland, D.; Mourou, G. Compression of amplified chirped optical pulses. Opt. Commun. 1985, 56, 219–221, doi:10.1016/0030-4018(85)90120-8.
[2]  Umstadter, D. Review of physics and applications of relativistic plasmas driven by ultra-intense lasers. Phys. Plasmas 2001, 8, 1774–1785, doi:10.1063/1.1364515.
[3]  Ditmire, T.; Bless, S.; Dyer, G.; Edens, A.; Grigsby, W.; Hays, G.; Madison, K.; Maltsev, A.; Colvin, J.; Edwards, M.J.; et al. Overview of future directions in high energy-density and high-field science using ultra-intense lasers. Radia. Phys. Chem. 2004, 70, 535–552, doi:10.1016/j.radphyschem.2003.12.042.
[4]  Aoyama, M.; Yamakawa, K.; Akahane, Y.; Ma, J.; Inoue, N.; Ueda, H.; Kiriyama, H. 0.85-PW, 33-fs Ti:sapphire laser. Opt. Lett. 2003, 28, 1594–1596.
[5]  Liang, X.; Leng, Y.C.; Li, C.; Lin, L.; Zhao, B.; Jiang, Y.; Lu, X.; Hu, M.; Zhang, C.; Lu, H.; et al. Parasitic lasing suppression in high gain femtosecond petawatt Ti:sapphire amplifier. Opt. Exp. 2007, 15, 15335–15341, doi:10.1364/OE.15.015335.
[6]  Fourmaux, S.; Payeur, S.; Alexandrov, A.; Serbanescu, S.; Martin, F.; Ozaki, T.; Kudryashov, A.; Kieffer, J.C. Laser beam wavefront correction for ultra high intensities with the 200 TW laser system at the advanced laser light source. Opt. Exp. 2008, 16, 11987–11994, doi:10.1364/OE.16.011987.
[7]  Yanovsky, V.; Chvykov, V.; Kalinchenko, G.; Rousseau, P.; Planchon, T.; Matsuoka, T.; Maksimchuk, A.; Nees, J.; Cheriaux, G.; Mourou, G.; Krushelnick, K. Ultra-high intensity-300TW laser at 0.1 Hz repetition rate. Opt. Exp. 2008, 16, 2109–2114, doi:10.1364/OE.16.002109.
[8]  Sung, J.H.; Lee, S.K.; Yu, T.J.; Jeong, T.M.; Lee, J. 0.1 Hz 1.0 PW Ti:sapphire laser. Opt. Lett. 2010, 35, 3021–3023, doi:10.1364/OL.35.003021.
[9]  Wang, Z.; Liu, C.; Shen, Z.; Zhang, Q.; Teng, H.; Wei, Z. High-contrast 1.16 PW Ti:sapphire laser system combined with a doubled chirped-pulse amplification scheme and a femtosecond optical-parametric amplifier. Opt. Lett. 2011, 36, 3194–3196.
[10]  Hooker, C.; Tang, Y.; Chekhlov, O.; Collier, J.; Divall, E.; Ertel, K.; Hawkes, S.; Parry, B.; Rajeev, P.R. Improving coherent contrast of petawatt laser pulses. Opt. Exp. 2011, 19, 2193–2203, doi:10.1364/OE.19.002193.
[11]  Kiriyama, H.; Mori, M.; Nakai, Y.; Shimomura, T.; Sasao, H.; Tanoue, M.; Kanazawa, S.; Wakai, D.; Sasao, F.; Okada, H.; et al. High temporal and spatial quality petawatt-class Ti:sapphire chirped-pulse amplification laser system. Opt. Lett. 2010, 35, 1497–1499, doi:10.1364/OL.35.001497.
[12]  Bahk, S.-W.; Rousseau, P.; Planchon, T.A.; Chvykov, V.; Kalintchenko, G.; Maksimchuk, A.; Mourou, G.A.; Yanovsky, V. Generation and characterization of the highest laser intensities (1022 W/cm2). Opt. Lett. 2004, 29, 2837–2839, doi:10.1364/OL.29.002837.
[13]  The Extreme Light Infrastructure. Available online: http://www.extreme-light-infrastructure.eu/ (accessed on 7 December 2012).
[14]  Ceccotti, T.; Lévy, A.; Popescu, H.; Réau, F.; D’Oliveira, P.; Monot, P.; Geindre, J.P.; Lefebvre, E.; Martin, P. Proton acceleration with high-intensity ultrahigh-contrast laser pulses. Phys. Rev. Lett. 2007, 99, 185002, doi:10.1103/PhysRevLett.99.185002.
[15]  Antici, P.; Fuchs, J.; d’Humières, E.; Lefebvre, E.; Borghesi, M.; Brambrink, E.; Cecchetti, C.A.; Gaillard, S.; Romagnani, L.; Sentoku, Y.; et al. Energetic protons generated by ultrahigh contrast laser pulses interacting with ultrathin targets. Phys. Plasmas 2007, 14, 030701, doi:10.1063/1.2480610.
[16]  Esarey, E.; Schroeder, C.B.; Leemans, W.P. Physics of laser-driven plasma-based electron accelerator. Rev. Mod. Phys. 2009, 81, 1229–1286, doi:10.1103/RevModPhys.81.1229.
[17]  Kotaki, H.; Daito, I.; Kando, M.; Hayashi, Y.; Kawase, K.; Kameshima, K.; Fukuda, Y.; Homma, T.; Ma, J.; Chen, L.-M.; et al. Electron optical injection with head-on and counter-crossing colliding laser pulses. Phys. Rev. Lett. 2009, 103, 194803, doi:10.1103/PhysRevLett.103.194803.
[18]  Fukuda, Y.; Faenov, A.Y.; Tampo, M.; Pikuz, T.A.; Nakamura, T.; Kando, M.; Hayashi, Y.; Yogo, A.; Sakaki, H.; Kameshima, T.; et al. Energy increase in multi-MeV ion acceleration in the interaction of a short pulse laser with a cluster-gas target. Phys. Rev. Lett. 2009, 103, 165002, doi:10.1103/PhysRevLett.103.165002.
[19]  Ogura, K.; Nishiuchi, M.; Pirozhkov, A.S.; Tanimoto, T.; Sagisaka, A.; Esirkepov, T.Z.; Kando, M.; Shizuma, T.; Hayakawa, T.; Kiriyama, H.; et al. Proton acceleration to 40 MeV using a high intensity, high contrast OPCPA/Ti:Sapphire hybrid laser system. Opt. Lett. 2012, 37, 2868–2870, doi:10.1364/OL.37.002868.
[20]  Fukuda, Y.; Sakaki, H.; Kanasaki, M.; Yogo, A.; Jinno, S.; Tampo, M.; Faenov, A.Y.; Pikuz, T.A.; Hayashi, Y.; Kando, M.; et al. Identification of high energy ions using backscattered particles in laser-driven ion acceleration with cluster-gas targets. Radiat. Meas. 2012. in press.
[21]  Rousse, A.; Phuoc, K.T.; Shah, R.; Pukhov, A.; Lefebvre, E.; Malka, V.; Kiselev, S.; Burgy, F.; Rousseau, J.-P.; Umstadter, D.; et al. Production of a keV X-ray bean from synchrotron radiation in relativistic laser-plasma interaction. Phys. Rev. Lett. 2004, 93, 135005, doi:10.1103/PhysRevLett.93.135005.
[22]  Kando, M.; Fukuda, Y.; Pirozhkov, A.S.; Ma, J.; Daito, I.; Chen, L.-M.; Esirkepov, T.Z.; Ogura, K.; Homma, T.; Hayashi, Y.; et al. Demonstration of laser-frequency upshift by electron-density modulations in a plasma wakefield. Phys. Rev. Lett. 2007, 99, 135001, doi:10.1103/PhysRevLett.99.135001.
[23]  Fukuda, Y.; Faenov, A.Y.; Pikuz, T.; Kando, M.; Kotaki, H.; Daito, I.; Ma, J.; Chen, L.M.; Homma, T.; Kawase, K.; et al. Soft X-ray source for nanostructure imaging using femtosecond-laser-irradiated clusters. Appl. Phys. Lett. 2008, 92, 121110, doi:10.1063/1.2899966.
[24]  Hayashi, Y.; Pirozhkov, A.S.; Kando, M.; Fukuda, Y.; Faenov, A.; Kawase, K.; Pikuz, T.; Nakamura, T.; Kiriyama, H.; Okada, H.; et al. Efficient generation of Xe K-shell X rays by high-contrast interaction with submicrometer clusters. Opt. Lett. 2011, 36, 1614–1616, doi:10.1364/OL.36.001614.
[25]  Pirozhkov, A.S.; Kando, M.; Esirkepov, T.Z.; Gallegos, P.; Ahmed, H.; Ragozin, E.N.; Faenov, A.Y.; Pikuz, T.A.; Kawachi, T.; Sagisaka, A.; et al. Soft X-ray harmonic comb from relativistic electron spikes. Phys. Rev. Lett. 2012, 108, 135004, doi:10.1103/PhysRevLett.108.135004.
[26]  Zhang, Z.; Nishimura, H.; Namimoto, T.; Fujioka, S.; Arikawa, Y.; Nishikino, M.; Kawachi, T.; Sagisaka, A.; Hosoda, H.; Orimo, S.; et al. Quantitative measurement of hard X-ray spectra for high intensity laser produced plasma. Rev. Sci. Instrum. 2012, 85, 53502.
[27]  Faenov, A.F.; Skobelev, I.Y.; Pikuz, T.A.; Pikuz, S.A.; Fortov, V.E.; Fukuda, Y.; Hayashi, Y.; Pirozhkov, A.; Kotaki, H.; Shimomura, T.; et al. X-ray spectroscopy diagnoses of clusters surviving under prepulses of ultraintense femtosecond laser pulse irradiation. Laser Part. Beams. 2012, 30, 481–488, doi:10.1017/S0263034612000419.
[28]  Ogura, K.; Shizuma, T.; Hayakawa, T.; Yogo, A.; Nishiuchi, M.; Orimo, S.; Sagisaka, A.; Pirozhkov, A.; Mori, M.; Kiriyama, H.; et al. Proton-induced nuclear reactions using compact high-contrast high-intensity laser. Appl. Phys. Exp. 2009, 2, 066001, doi:10.1143/APEX.2.066001.
[29]  Ogura, K.; Shizuma, T.; Hayakawa, T.; Yogo, A.; Nishiuchi, M.; Orimo, S.; Sagisaka, A.; Pirozhkov, A.; Mori, M.; Kiriyama, H.; et al. Complementary characterization of radioactivity produced by repetitive laser-driven proton beam using shot-to-shot proton spectral measurement and direct activation measurement. Jpn. J. Appl. Phys. 2012, 51, 048003, doi:10.1143/JJAP.51.048003.
[30]  Dromey, B.; Zepf, M.; Gopal, A.; Lancaster, K.; Wei, M.S.; Krusheknick, K.; Tatarakis, M.; Vakakis, N.; Moustaizis, S.; Kodama, R.; et al. High harmonic generation in the relativistic limit. Nat. Phys. 2006, 2, 456–459, doi:10.1038/nphys338.
[31]  Neely, D.; Foster, P.; Robinson, A.; Lindau, F.; Lundh, O.; Persson, A.; Wahlstr?m, C.G.; McKenna, P. Enhanced proton beams from ultrathin targets driven by high contrast laser pulse. Appl. Phys. Lett. 2006, 89, 021502, doi:10.1063/1.2220011.
[32]  Minkovski, N.; Petrov, G.I.; Saltiel, S.M.; Albert, O.; Etchepare, J. Nonlinear polarization rotation and orthogonal polarization generation experienced in a single-beam configuration. J. Opt. Soc. Am. B 2004, 21, 1659–1664.
[33]  Jullien, A.; Albert, O.; Burgy, F.; Hamoniaux, G.; Rousseau, J.P.; Chambaret, J.P.; Augé-Rochereau, F.; Chériaux, G.; Etchepare, J.; Minkovski, N.; et al. 10?10 temporal contrast for femtosecond ultraintense lasers by crosspolarized wave generation. Opt. Lett. 2005, 30, 920–922, doi:10.1364/OL.30.000920.
[34]  Itatani, J.; Faure, J.; Nantel, M.; Mourou, G.; Watanabe, S. Suppression of the amplifiedspontaneous emissionin chirpedpulse-amplification lasers by clean high-energy seed-pulse injection. Opt. Commun. 1998, 148, 70–74, doi:10.1016/S0030-4018(97)00638-X.
[35]  Kiriyama, H.; Mori, M.; Nakai, Y.; Shimomura, T.; Tanoue, M.; Akutsu, A.; Okada, H.; Motomura, T.; Kondo, S.; Kanazawa, S.; et al. Generation of high-contrast and high-intensity laser pulses using an OPCPA preamplifier in a double CPA, Ti:sapphire laser system. Opt. Commun. 2009, 282, 625–628, doi:10.1016/j.optcom.2008.10.067.
[36]  Dromey, B.; Kar, S.; Zepf, M.; Foster, P. The plasma mirror—A subpicosecond optical switch for ultrahigh power lasers. Rev. Sci. Instrum. 2004, 75, 645–649, doi:10.1063/1.1646737.
[37]  Taur, C.; Quéré, F.; Geindre, J.-P.; Levy, A.; Ceccotti, T.; Monot, P.; Bougeard, M.; Réau, F.; D’oliveira, P.; Audebert, P.; et al. Plasma mirrors for ultrahighintensity optics. Nat. Phys. 2007, 3, 424–429, doi:10.1038/nphys595.
[38]  Liu, J.; Okamura, K.; Kida, Y.; Kobayashi, T. Temporal contrast enhancement of femtosecond pulses by a self-diffraction process in a bulk Kerr medium. Opt. Exp. 2010, 18, 22245–22254, doi:10.1364/OE.18.022245.
[39]  Chvykov, V.; Rousseau, P.; Reed, S.; Kalinchenko, G.; Yanovsky, V. Generation of 1011 contrast 50 TW laser pulses. Opt. Lett. 2006, 31, 1456–1458, doi:10.1364/OL.31.001456.
[40]  Wittmann, T.; Geindre, J.P.; Audebert, P.; Marjoribanks, R.S.; Rousseau, J.P.; Burgy, F.; Douillet, D.; Lefrou, T.; Phuoc, K.T.; Chambaret, J.P. Towards ultrahigh-contrast ultraintense laser pulses—Complete characterization of a double plasma-mirror pulse cleaner. Rev. Sci. Instrum. 2006, 77, 083109, doi:10.1063/1.2234850.
[41]  Kim, I.J.; Choi, I.W.; Lee, S.K.; Janulewicz, K.A.; Sung, J.H.; Yu, T.J.; Kim, H.T.; Yun, H.; Jeong, T.M.; Lee, J. Spatio-Temporal characterization of double plasma mirror for ultrahigh contrast and stable laser pulse. Appl. Phys. B 2011, 104, 81–86, doi:10.1007/s00340-011-4584-2.
[42]  Dubietis, A.; Jonusauskas, G.; Piskarskas, A. Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal. Opt. Commun. 1992, 88, 437–440, doi:10.1016/0030-4018(92)90070-8.
[43]  Ross, I.N.; Matousek, P.; Towrie, M.; Langley, A.J.; Collier, J.L. The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers. Opt. Commun. 1997, 144, 125–133, doi:10.1016/S0030-4018(97)00399-4.
[44]  Kitagawa, Y.; Fujita, H.; Kodama, R.; Yoshida, H.; Matsuo, S.; Jitsuno, T.; Kawasaki, T.; Kitamura, H.; Kanabe, T.; Sakabe, S.; et al. Prepulse-free petawatt laser for a fast ignitor. IEEE J. Quantum Electron. 2004, 40, 281–293, doi:10.1109/JQE.2003.823043.
[45]  Musgrave, I.O.; Hernandez-Gomez, C.; Canny, D.; Collier, J.; Heathcote, R. Minimization of the impact of a broad bandwidth high-gain nonlinear preamplifier to the amplified spontaneous emission pedestal of the Vulcan petawatt laser facility. Appl. Opt. 2007, 46, 6978–6983, doi:10.1364/AO.46.006978.
[46]  Blanchot, N.; Behar, G.; Berthier, T.; Bignon, E.; Boubault, F.; Chappuis, C.; Co?c, H.; Damiens-Dupont, C.; Ebrardt, J.; Gautheron, Y.; et al. Overview of PETAL, multi-petawatt project on the LIL facility. Plasma Phys. Controlled Fusion 2008, 50, 124045, doi:10.1088/0741-3335/50/12/124045.
[47]  Schwarz, J.; Rambo, P.; Geissel, M.; Kimmel, M.; Brambrink, E.; Atherton, B.; Glassman, J. A hybrid OPCPA/Nd:phosphate glass multi-terawatt laser system for seeding of a petawatt laser. Opt. Commun. 2008, 281, 4984–4992, doi:10.1016/j.optcom.2008.06.043.
[48]  Ple, F.; Pittman, M.; Jamelot, G.; Chambaret, J.P. Design and demonstration of a high-energy booster amplifier for a high-repetition rate petawatt class laser system. Opt. Lett. 2007, 32, 238–240, doi:10.1364/OL.32.000238.
[49]  Ertel, K.; Hooker, C.; Hawkes, S.J.; Parry, B.T.; Collier, J.L. ASE suppression in a high energy titanium sapphire amplifier. Opt. Exp. 2008, 16, 8039–8049.
[50]  Fourmaux, S.; Payeur, S.; Buffechoux, S.; Lassonde, P.; St Pierre, C.; Martin, F.; Kieffer, J.C. Pedestal cleaning for high laser pulse contrast ratio with a 100 TW class laser system. Opt. Exp. 2011, 19, 8486–8497.
[51]  Hong, K.H.; Hou, B.; Nees, J.A.; Power, E.; Mourou, G.A. Generation and measurement of >108 intensity contrast ratio in a relativistic kHz chirped-pulse amplified laser. Appl. Phys. B 2005, 81, 447–457, doi:10.1007/s00340-005-1881-7.
[52]  Cheriaux, G.; Rousseau, P.; Salin, F.; Chambaret, J.P.; Walker, B.; Dimauro, L.F. Aberration-free stretcher design for ultrashort-pulse amplification. Opt. Lett. 1996, 21, 414–416, doi:10.1364/OL.21.000414.
[53]  Tavella, F.; Marcinkevicius, A.; Krausz, F. Investigation of the superfluorescence and signal amplification in an ultrabroadband multiterawatt optical parametric chirped pulse amplifier system. New J. Phys. 2006, 8, 219, doi:10.1088/1367-2630/8/10/219.
[54]  Okada, H.; Kiriyama, H.; Mori, M.; Nakai, Y.; Shimomura, T.; Tanoue, M.; Kondo, S.; Kanazawa, S.; Daido, H.; Kimura, T.; et al. Demonstration of highly efficient broadband amplification in an optical parametric chirped-pulse amplifier system. Opt. Rev. 2009, 16, 1–3, doi:10.1007/s10043-009-0001-z.
[55]  Shah, R.C.; Johnson, R.P.; Shimada, T.; Flippo, K.A.; Fernandez, J.C.; Hegelich, B.M. High-Temporal contrast using low-gain optical parametric amplification. Opt. Lett. 2009, 34, 2273–2275.
[56]  Kiriyama, H.; Mori, M.; Nakai, Y.; Yamamoto, Y.; Tanoue, M.; Akutsu, A.; Shimomura, T.; Kondo, S.; Kanazawa, S.; Daido, H.; et al. High-energy, high-contrast, multiterawatt laser pulses by optical parametric chirped-pulse amplification. Opt. Lett. 2007, 32, 2315–2317, doi:10.1364/OL.32.002315.
[57]  Bagnoud, V.; Begishev, I.A.; Guardalben, M.J.; Puth, J.; Zuegel, J.D. 5 Hz, >250 mJ optical parametric chirped-pulse amplifier at 1053 nm. Opt. Lett. 2005, 30, 1843–1845.
[58]  Wnuk, P.; Stepanenko, Y.; Radzewicz, C. Multi-terawatt chirped pulse optical parametric amplifier with a time-shear power amplification stage. Opt. Exp. 2009, 17, 15264–15273.
[59]  Chekhlov, O.V.; Collier, J.L.; Ross, I.N.; Bates, P.K.; Notley, M.; Hernandez-Gomez, C.; Shaikh, W.; Danson, C.N.; Neely, D.; Matousek, P.; et al. 35 J broadband femtosecond optical parametric chirped pulse amplification system. Opt.Lett. 2006, 31, 3665–3667, doi:10.1364/OL.31.003665.
[60]  Suzuki, M.; Kiriyama, H.; Daito, I.; Okada, H.; Nakai, Y.; Orimo, S.; Sato, M.; Tamaoki, Y.; Yoshii, T.; Maeda, J.; et al. Multimillijoule, nonlinear preamplifier for high intensity femtosecond Yb:YAG chirped-pulse amplification lasers at 1030 nm. Appl. Phys. B 2009, 97, 379–382, doi:10.1007/s00340-009-3741-3.
[61]  Kiriyama, H.; Inoue, N.; Akahane, Y.; Yamakawa, K. Prepulse-Free, multi-terawatt, sub-30 fs laser system. Opt. Exp. 2006, 14, 438–445, doi:10.1364/OPEX.14.000438.
[62]  Pittman, M.; Ferré, S.; Rousseau, J.P.; Notebaert, L.; Chambaret, J.P.; Chériaux, G. Design and characterization of a near-diffraction-limited femtosecond 100 TW 10 Hz high-intensity laser system. Appl. Phys. B 2002, 74, 529–535, doi:10.1007/s003400200838.
[63]  Kiriyama, H.; Mori, M.; Nakai, Y.; Shimomura, T.; Tanoue, M.; Akutsu, A.; Kondo, S.; Kanazawa, S.; Okada, H.; Motomura, T.; et al. High-Contrast, highintensity laser pulse generation using a nonlinear preamplifier in a Ti:sapphire laser system. Opt. Lett. 2008, 33, 645–647, doi:10.1364/OL.33.000645.
[64]  Planchon, T.A.; Amir, W.; Childress, C.; Squier, J.A.; Durfee, C.G. Measurement of pump-induced transient lensing in a cryogenically-cooled high average power Ti:sapphire amplifier. Opt. Exp. 2008, 16, 18557–18564.
[65]  Eimerl, D. Quadrature frequency conversion. IEEE J. Quantum Electron. 1987, 23, 1361–1371, doi:10.1109/JQE.1987.1073521.
[66]  Kiriyama, H.; Nakano, F.; Yamakawa, K. High-efficiency frequency doubling of a Nd:YAG laser in a two-pass quadrature frequency-conversion scheme using CsLiB6O10 crystals. J. Opt. Soc. Am. B 2002, 19, 1857–1864, doi:10.1364/JOSAB.19.001857.
[67]  Tanaka, M.; Kiriyama, H.; Ochi, Y.; Nakai, Y.; Sasao, H.; Okada, H.; Daido, H.; Bolton, P.; Kawanishi, S. High-energy, spatially flat-top green pump laser by beam homogenization for petawatt scale Ti:sapphire laser systems. Opt. Commun. 2009, 282, 4401–4403, doi:10.1016/j.optcom.2009.07.064.
[68]  Kiriyama, H.; Tanaka, M.; Ochi, Y.; Nakai, Y.; Sasao, H.; Okada, H.; Mori, M.; Shimomura, T.; Kanazawa, S.; Daido, H.; et al. 100 J level green laser beam homogenization to pump a petawatt class Ti:sapphire chirped-pulse amplification laser system. Rev. Laser Eng. 2009, 37, 467–469.
[69]  Frantz, L.M.; Nodvik, J.S. Theory of pulse propagation in a laser amplifier. J. Appl. Phys. 1963, 34, 2346–2349, doi:10.1063/1.1702744.
[70]  Borghesi, M.; Fuchs, J.; Bulanov, S.V.; MacKinnon, A.J.; Patel, P.K.; Roth, M. Fast ion generation by high-intensity laser irradiation of solid targets and applications. Fus. Sci. Technol. 2006, 49, 412–439.
[71]  Daido, H.; Nishiuchi, M.; Pirozhkov, A.S. Review of laser-driven ion sources and their applications. Rep. Prog. Phys. 2012, 75, 056401, doi:10.1088/0034-4885/75/5/056401.
[72]  Bulanov, S.V.; Khoroshkov, V.S. Feasibility of using laser ion accelerators in proton therapy. Plasma Phys. Rep. 2002, 28, 453–456, doi:10.1134/1.1478534.
[73]  Fourkal, E.; Shahine, B.; Ding, M.; Li, J.S.; Tajima, T.; Ma, C.M. Particle in cell simulation of laser-accelerated proton beams for radiation therapy. Med. Phys. 2002, 29, 2788–2798, doi:10.1118/1.1521122.
[74]  Malka, V.; Fritzler, S.; Lefebvre, E.; d'Humières, E.; Ferrand, R.; Grillon, G.; Albaret, C.; Meyroneinc, S.; Chambaret, J.P.; Antonetti, A.; et al. Practicability of protontherapy using compact laser systems. Med. Phys. 2004, 31, 1587–1592, doi:10.1118/1.1747751.
[75]  Hatchett, S.P.; Brown, C.G.; Cowan, T.E.; Henry, E.A.; Johnson, J.S.; Key, M.H.; Koch, J.A.; Langdon, A.B.; Lasinski, B.F.; Lee, R.W.; et al. Electron, photon, and ion beams from the relativistic interaction of Petawatt laser pulses with solid targets. Phys. Plasmas 2000, 7, 2076–2082, doi:10.1063/1.874030.
[76]  Mackinnon, A.J.; Sentoku, Y.; Patel, P.K.; Price, D.W.; Hatchett, S.; Key, M.H.; Andersen, C.; Snavely, R.; Freeman, R.R. Enhancement of proton acceleration by hot-electron recirculation in thin foils irradiated by ultraintense laser pulses. Phys. Rev. Lett. 2002, 88, 215006, doi:10.1103/PhysRevLett.88.215006.
[77]  Wilks, S.C.; Kruer, W.L.; Tabak, M.; Langdon, A.B. Absorption of ultra-intense laser pulses. Phys. Rev. Lett. 2002, 69, 1383–1386.
[78]  Passoni, M.; Lontano, M. Theory of light-ion acceleration driven by a strong charge separation. Phys. Rev. Lett. 2008, 101, 115001, doi:10.1103/PhysRevLett.101.115001.
[79]  Kanasaki, M.; Fukuda, Y.; Sakaki, H.; Hori, T.; Tampo, M.; Kondo, K.; Kurashima, S.; Kamiya, T.; Oda, K.; Yamauchi, T. The diagnosis method for high-energy ion beams using backscattered particles for laser-driven ion acceleration experiments. Jpn. J. Appl. Phys. 2012, 51, 056401, doi:10.1143/JJAP.51.056401.
[80]  Tajima, T.; Dawson, J.M. Laser electron accelerator. Phys. Rev. Lett. 1979, 43, 267–270, doi:10.1103/PhysRevLett.43.267.
[81]  Esarey, E.; Hubbard, R.F.; Leemans, W.P.; Ting, A.; Sprangle, P. Electron injection into plasma wakefields by colliding laser pulses. Phys. Rev. Lett. 1997, 79, 2682–2685.
[82]  Kotaki, H.; Masuda, S.; Kando, M.; Koga, J.K.; Nakajima, K. Head-On injection of a high quality electron beam by the interaction of two laser pulses. Phys. Plasmas 2004, 11, 3296–3302, doi:10.1063/1.1751171.
[83]  Fubiani, G.; Esarey, E.; Schroeder, C.B.; Leemans, W.P. Beat wave injection of electrons into plasma waves using two interfering laser pulses. Phys. Rev. E 2004, 70, 016402, doi:10.1103/PhysRevE.70.016402.
[84]  Faure, J.; Rechatin, C.; Norlin, A.; Lifschitz, A.; Glinec, Y.; Malka, V. Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses. Nature 2006, 444, 737–739.
[85]  Bulanov, S.V.; Esirkepov, T.; Tajima, T. Light intensification towards the schwinger limit. Phys. Rev. Lett. 2003, 91, 085001, doi:10.1103/PhysRevLett.91.085001.
[86]  Pirozhkov, A.S.; Ma, J.; Kando, M.; Esirkepov, T.Z.; Fukuda, Y.; Chen, L.-M.; Daito, I.; Ogura, K.; Homma, T.; Hayashi, Y.; et al. Frequency multiplication of light back-reflected from a relativistic wake wave. Phys. Plasmas 2007, 14, 123106, doi:10.1063/1.2816443.
[87]  Kando, M.; Pirozhkov, A.S.; Kawase, K.; Esirkepov, T.Z.; Fukuda, Y.; Kiriyama, H.; Okada, H.; Daito, I.; Kameshima, T.; Hayashi, Y.; et al. Enhancement of photon number reflected by the relativistic flying mirror. Phys. Rev. Lett. 2009, 103, 235003, doi:10.1103/PhysRevLett.103.235003.
[88]  Dorchies, F.; Blasco, F.; Bonté, C.; Caillaud, T.; Fourment, C.; Peyrusse, O. Observation of subpicosecond X-ray emission from laser-cluster interaction. Phys. Rev. Lett. 2008, 100, 205002.
[89]  Pirozhkov, A.S.; Kando, M.; Esirkepov, T.Zh.; Ragozin, E.N.; Faenov, A.Y.; Pikuz, T.A.; Kawachi, T.; Sagisaka, A.; Mori, M.; Kawase, K.; et al. X-ray harmonic comb from relativistic electron spikes. Available online: http://arxiv.org/abs/1004.4514 (accessed on 26 April 2010).
[90]  Mourou, G.A.; Tajima, T.; Bulanov, S.V. Optics in the relativistic regime. Rev. Mod. Phys. 2006, 78, 309–371, doi:10.1103/RevModPhys.78.309.
[91]  Hooker, C.J.; Blake, S.; Chekhlov, O.; Clarke, R.J.; Collier, J.L.; Divall, E.J.; Ertel, K.; Foster, P.S.; Hawkes, S.J.; Holligan, P.; et al. Commissioning the Astra Gemini Petawatt Ti:Sapphire Laser System. In Proceedings of Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, San Jose, California, USA, 4–9 May 2008; Optical Society of America: Washington, DC, USA, 2008.
[92]  Esirkepov, T.Z. Exact charge conservation scheme for Particle-in-Cell simulation with an arbitrary form-factor. Comput. Phys. Comm. 2001, 135, 144–153, doi:10.1016/S0010-4655(00)00228-9.
[93]  Arnold, V.I. Catastrophe Theory, 3rd ed.; Springer-Verlag: Berlin, Germany, 1992.
[94]  Poston, T.; Stewart, I. Catastrophe Theory and Its Applications; Publisher: Mineola, NY, USA, 1996.
[95]  Esirkepov, T.Zh.; Kato, Y.; Bulanov, S.V. Bow wave from ultraintense electromagnetic pulses in plasmas. Phys. Rev. Lett. 2008, 101, 265001, doi:10.1103/PhysRevLett.101.265001.
[96]  Wilson, R.R. Radiological use of fast protons. Radiology 1946, 47, 487–491.
[97]  Bulanov, S.V.; Esirkepov, T.Z.; Khoroshkov, V.S.; Kuznetsov, A.V.; Pegoraro, F. Oncological hadrontherapy with laser ion accelerators. Phys. Lett. A 2002, 299, 240–247, doi:10.1016/S0375-9601(02)00521-2.
[98]  Yogo, A.; Sato, K.; Nishikino, M.; Mori, M.; Teshima, T.; Numasaki, H.; Murakami, M.; Demizu, Y.; Akagi, S.; Nagayama, S.; et al. Application of laser-accelerated protons to the demonstration of DNA double-strand breaks in human cancer cells. Appl. Phys. Lett. 2009, 94, 181502, doi:10.1063/1.3126452.
[99]  Yogo, A.; Sato, K.; Nishikino, M.; Maeda, T.; Sakaki, H.; Hori, T.; Ogura, K.; Nishiuchi, M.; Teshima, T.; Nishimura, H.; et al. Measurement of DNA double-strand break yield in human cancer cells by high-current, short-duration bunches of laser-accelerated protons. Jpn. J. Appl. Phys. 2011, 50, 106401, doi:10.1143/JJAP.50.106401.
[100]  Yogo, A.; Maeda, T.; Hori, T.; Sakaki, H.; Ogura, K.; Nishiuchi, M.; Sagisaka, A.; Kiriyama, H.; Okada, H.; Kanazawa, S.; et al. Measurement of relative biological effectiveness of protons in human cancer cells using a laser-driven quasimonoenergetic proton beamline. Appl. Phys. Lett. 2011, 98, 053701, doi:10.1063/1.3551623.
[101]  Nakamura, S.; Iwashita, Y.; Noda, A.; Shirai, T.; Tongu, H.; Fukumi, A.; Kado, M.; Yogo, A.; Mori, M.; Orimo, S.; et al. Real-time optimization of proton production by intense short-pulse laser with time-of-flight measurement. Jpn. J. Appl. Phys. 2006, 45, L913–L916, doi:10.1143/JJAP.45.L913.
[102]  Folkard, M.; Prise, K.M.; Vojnovic, B.; Newman, H.C.; Roper, M.J.; Michael, B.D. Inactivation of V79 cells by low-energy protons, deuterons and helium-3 ions. Int. J. Radiat. Biol. 1996, 69, 729–738, doi:10.1080/095530096145472.
[103]  Marklund, M.; Shukla, P. Nonlinear collective effects in photon-photon and photon-plasma interactions. Rev. Mod. Phys. 2006, 78, 591–640, doi:10.1103/RevModPhys.78.591.
[104]  Piazza, A.D.; Muller, C.; Hatsagortsyan, K.Z.; Keitel, C.H. Extremely high-intensity laser interactions with fundamental quantum systems. Rev. Mod. Phys. 2012, 84, 1177–1228, doi:10.1103/RevModPhys.84.1177.
[105]  Bulanov, S.V.; Esirkepov, T.Zh.; Hayashi, Y.; Kando, M.; Kiriyama, H.; Koga, J.K.; Kondo, K.; Kotaki, H.; Pirozhkov, A.S.; Bulanov, S.S.; et al. On the design of experiments for the study of extreme field limits in the interaction of laser with ultrarelativistic electron beam. Nucl. Instrum. Methods Phys. Res. A 2011, 660, 31–42, doi:10.1016/j.nima.2011.09.029.
[106]  Tomassini, P.; Giulietti, A.; Giulietti, D.; Gizzi, L.A. Thomson backscattering X-rays from ultra-relativistic electron bunches and temporally shaped laser pulses. Appl. Phys. B 2005, 80, 419–436, doi:10.1007/s00340-005-1757-x.
[107]  Nakamura, T.; Koga, J.K.; Esirkepov, T.Z.; Kando, M.; Korn, G.; Bulanov, S.V. High-power γ-ray flash generation in ultraintense laser-plasma interactions. Phys. Rev. Lett. 2012, 108, 195001.
[108]  Bulanov, S.S.; Chen, M.; Schroeder, C.B.; Esarey, E.; Leemans, W.P.; Bulanov, S.V.; Esirkepov, T.Z.; Kando, M.; Koga, J.K.; Zhidkov, A.G.; et al. On the design of experiments to study extreme field limits. Available online: http://arxiv.org/abs/1209.0720 (accessed on 7 December 2012).
[109]  Bamber, C.; Boege, S.J.; Koffas, T.; Kotseroglou, T.; Melissinos, A.C.; Meyerhofer, D.D.; Reis, D.A.; Ragg, W.; Bula, C.; McDonald, K.T.; et al. Studies of nonlinear QED in collisions of 46.6 GeV electrons with intense laser pulses. Phys. Rev. D 1999, 60, 092004, doi:10.1103/PhysRevD.60.092004.
[110]  Metzger, T.; Schwarz, A.; Teisset, C.Y.; Sutter, D.; Killi, A.; Kienberger, R.; Krausz, F. High-Repetition-rate picosecond pump laser based on a Yb:YAG disk amplifier for optical parametric amplification. Opt. Lett. 2009, 34, 2123–2125.
[111]  Tümmler, J.; Jung, R.; Stiel, H.; Nickles, P.V.; Sandner, W. High-Repetition-Rate chirped-pulse amplification thin-disk laser system with joule-level pulse energy. Opt. Lett. 2009, 34, 1378–1380, doi:10.1364/OL.34.001378.
[112]  Suzuki, M.; Kiriyama, H.; Daito, I.; Ochi, Y.; Okada, H.; Sato, M.; Tamaoki, Y.; Yoshii, T.; Maeda, J.; Matsuoka, S.; et al. OPCPA/Yb:YAG ceramic thin disk hybrid laser system. Appl. Phys. B 2011, 105, 181–184, doi:10.1007/s00340-011-4752-4.
[113]  Okada, H.; Tanaka, M.; Kiriyama, H.; Nakai, Y.; Ochi, Y.; Sugiyama, A.; Daido, H.; Kimura, T.; Yanagitani, T.; Yagi, H.; et al. Laser ceramic materials for subpicosecond solid-state lasers using Nd3+-doped mixed scandium garnets. Opt. Lett. 2010, 35, 3048–3050, doi:10.1364/OL.35.003048.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133