全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

ADDITIONAL ANALYSIS OF BINOMIAL RECURRENCE COEFFICIENTS

DOI: ne znam sta je

Keywords: Bell numbers , Bell polynomials , linear recurrence , combinatorial identities

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper involves an investigation of $ig(f(n)ig)_{n=1}^{infty},$where $f(n)$ is defined by$$ f(n+1)=sum_{k=1}^n i{n}{k}f(k),qquad nge 1. leqno(0.1)$$Through successive iterations of (0.1), it is shown that$$ f(n+r)=sum_{k=1}^n f(k)sum_{j=0}^{r-1}A_j^r(n)i{n+j}{k}, qquad rge 1,,nge 1.leqno(0.2)$$The $A_j^r(n)$ of (0.2) are the {it binomial recurrence coefficients.} The main result of this paper is arecurrence formula for the $A_j^r(n),$ namely,$$ sum_{j=k}^{r-1}i{j}{k}A_j^r=A_{k-1}^r,leqno(0.3)$$where $A_j^requiv A_j^r(0).$ This paper then provides two applications involving (0.3). The firstinvolves series inversion while the second involves polynomials whose general term has theform $A_j^rx^j.$

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133