Significant progress has been made in the last few years on understanding how supermassive black holes form and grow. In this paper, we begin by reviewing the spectral signatures of active galactic nuclei (AGN) ranging from radio to hard X-ray wavelengths. We then describe the most commonly used methods to find these sources, including optical/UV, radio, infrared, and X-ray emission, and optical emission lines. We then describe the main observational properties of the obscured and unobscured AGN population. Finally, we summarize the cosmic history of black hole accretion, that is, when in the history of the universe supermassive black holes were getting most of their mass. We finish with a summary of open questions and a description of planned and future observatories that are going to help answer them. 1. Introduction Astrophysical black holes come in a wide range of masses, from ? for stellar mass black holes [1] to ~ for so-called supermassive black holes [2, 3]. The best evidence for the existence of a supermassive black hole can be found in the center of the Milky Way galaxy, where from dynamical studies, the mass of the Sgr source was established to be ~ [4, 5]. Evidence for the existence of supermassive black holes has also been found in other massive nearby galaxies [6], mostly from resolved stellar and gas kinematics. For active galaxies, it has been possible to use the technique known as reverberation mapping [7–9]. From these observations, a clear correlation has been established between the mass of the central black hole and properties of the host galaxy such as stellar mass in the spheroidal component [10], luminosity [11], velocity dispersion [12, 13] and mass of the dark matter halo [14]. The fact that such correlations exist, even though these components have very different spatial scales, suggests a fundamental relationship between black hole formation and galaxy evolution. Furthermore, it is now well established by simulations [15] that the energy output from the growing central black hole can play a significant role in the star formation history of the host galaxy. In particular, theory suggests that nuclear activity regulates star formation either by removing all the gas [16, 17] or by heating it [18]. It is therefore obvious that a complete study of galaxy evolution requires a comprehensive understanding of black hole growth. Most current black hole formation models tell us that the first black hole seeds formed at . While the exact mechanism for the formation of the first black holes is not currently known, there are several
References
[1]
J. A. Orosz, “Inventory of black hole binaries,” in A Massive Star Odyssey: From Main Sequence to Supernova, K. van der Hucht, A. Herrero, and C. Esteban, Eds., vol. 212 of IAU Symposium, p. 365, 2003.
[2]
D. Lynden-Bell, “Galactic nuclei as collapsed old quasars,” Nature, vol. 223, no. 5207, pp. 690–694, 1969.
[3]
T. R. Lauer, S. M. Faber, D. Richstone et al., “The masses of nuclear black holes in luminous elliptical galaxies and implications for the space density of the most massive black holes,” Astrophysical Journal, vol. 662, no. 2, pp. 808–834, 2007.
[4]
R. Genzel, A. Eckart, T. Ott, and F. Eisenhauer, “On the nature of the dark mass in the centre of the Milky Way,” Monthly Notices of the Royal Astronomical Society, vol. 291, no. 1, pp. 219–234, 1997.
[5]
A. M. Ghez, B. L. Klein, M. Morris, and E. E. Becklin, “High proper-motion stars in the vicinity of sagittarius A*: evidence for a supermassive black hole at the center of our galaxy,” Astrophysical Journal, vol. 509, no. 2, pp. 678–686, 1998.
[6]
J. Kormendy and D. Richstone, “Inward bound—the search for supermassive black holes in galactic nuclei,” Annual Review of Astronomy and Astrophysics, vol. 33, no. 1, pp. 581–624, 1995.
[7]
J. N. Bahcall, B.-Z. Kozlovsky, and E. E. Salpeter, “On the time dependence of emission-line strengths from a photoionized nebula,” Astrophysical Journal, vol. 171, p. 467, 1972.
[8]
R. D. Blandford and C. F. McKee, “Reverberation mapping of the emission line regions of Seyfert galaxies and quasars,” Astrophysical Journal, vol. 255, pp. 419–439, 1982.
[9]
B. M. Peterson, “Reverberation mapping of active galactic nuclei,” Astronomical Society of the Pacific, vol. 105, pp. 247–268, 1993.
[10]
A. Marconi and L. K. Hunt, “The relation between black hole mass, bulge mass, and near-Infrared luminosity,” Astrophysical Journal, vol. 589, no. 1, pp. L21–L24, 2003.
[11]
J. Magorrian, S. Tremaine, D. Richstone et al., “The demography of massive dark objects in galaxy centers,” Astronomical Journal, vol. 115, no. 6, pp. 2285–2305, 1998.
[12]
L. Ferrarese and D. Merritt, “A fundamental relation between supermassive black holes and their host galaxies,” Astrophysical Journal, vol. 539, no. 1, pp. L9–L12, 2000.
[13]
K. Gebhardt, R. Bender, G. Bower et al., “A relationship between nuclear black hole mass and galaxy velocity dispersion,” Astrophysical Journal, vol. 539, no. 1, pp. L13–L16, 2000.
[14]
L. Ferrarese, “Beyond the bulge: a fundamental relation between supermassive black holes and dark matter halos,” Astrophysical Journal, vol. 578, no. 1, pp. 90–97, 2002.
[15]
V. Springel, T. Di Matteo, and L. Hernquist, “Modelling feedback from stars and black holes in galaxy mergers,” Monthly Notices of the Royal Astronomical Society, vol. 361, no. 3, pp. 776–794, 2005.
[16]
P. F. Hopkins, L. Hernquist, T. J. Cox, T. Di Matteo, B. Robertson, and V. Springel, “A unified, merger-driven model of the origin of starbursts, quasars, the cosmic X-ray background, supermassive black holes, and galaxy spheroids,” Astrophysical Journal Supplement Series, vol. 163, no. 1, pp. 1–49, 2006.
[17]
N. Menci, A. Fontana, E. Giallongo, A. Grazian, and S. Salimbeni, “The abundance of distant and extremely red galaxies: the role of AGN feedback in hierarchical models,” Astrophysical Journal, vol. 647, no. 2, pp. 753–762, 2006.
[18]
D. J. Croton, V. Springel, S. D. M. White et al., “The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colours of galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 365, no. 1, pp. 11–28, 2006.
[19]
M. J. Rees, “Structure and properties of nearby galaxies,” in Proceedings of the Symposium, vol. 1, pp. 237–244, Bad Muenstereifel, Germany, 1978.
[20]
M. Volonteri, “Formation of supermassive black holes,” Astronomy and Astrophysics Review, vol. 18, no. 3, pp. 279–315, 2010.
[21]
C. J. Willott, L. Albert, D. Arzoumanian et al., “Eddington-limited accretion and the black hole mass function at redshift 6,” Astronomical Journal, vol. 140, no. 2, pp. 546–560, 2010.
[22]
V. Bromm and A. Loeb, “Formation of the first supermassive black holes,” Astrophysical Journal, vol. 596, no. 1, pp. 34–46, 2003.
[23]
B. Devecchi and M. Volonteri, “Formation of the first nuclear clusters and massive black holes at high redshift,” Astrophysical Journal, vol. 694, no. 1, pp. 302–313, 2009.
[24]
A. Soltan, “Masses of quasars,” Monthly Notices of the Royal Astronomical Society, vol. 200, pp. 115–122, 1982.
[25]
E. Treister, P. Natarajan, D. B. Sanders, C. Megan Urry, K. Schawinski, and J. Kartaltepe, “Major galaxy mergers and the growth of supermassive black holes in quasars,” Science, vol. 328, no. 5978, pp. 600–602, 2010.
[26]
D. B. Sanders, B. T. Soifer, J. H. Elias, et al., “Ultraluminous infrared galaxies and the origin of quasars,” Astrophysical Journal, vol. 325, pp. 74–91, 1988.
[27]
P. F. Hopkins and L. Hernquist, “Fueling low-level AGN activity through stochastic accretion of cold gas,” Astrophysical Journal, vol. 166, no. 1, pp. 1–36, 2006.
[28]
R. Antonucci, “Unified models for active galactic nuclei and quasars,” Annual Review of Astronomy and Astrophysics, vol. 31, no. 1, pp. 473–521, 1993.
[29]
C. M. Urry and P. Padovani, “Unified schemes for radio-loud active galactic nuclei,” Astronomical Society of the Pacific, vol. 107, p. 803, 1995.
[30]
A. Lawrence, “The relative frequency of broad-lined and narrow-lined active galactic nuclei—implications for unified schemes,” Monthly Notices of the Royal Astronomical Society, vol. 252, pp. 586–592, 1991.
[31]
E. Treister and C. M. Urry, “The evolution of obscuration in active galactic nuclei,” Astrophysical Journal, vol. 652, no. 2, pp. L79–L82, 2006.
[32]
R. C. Hickox and M. Markevitch, “Absolute measurement of the unresolved cosmic X-ray background in the 0.5-8 keV band with Chandra,” Astrophysical Journal, vol. 645, no. 1, pp. 95–114, 2006.
[33]
R. F. Mushotzky, L. L. Cowie, A. J. Barger, and K. A. Arnaud, “Resolving the extragalactic hard X-ray background,” Nature, vol. 404, no. 6777, pp. 459–464, 2000.
[34]
G. Setti and L. Woltjer, “Active galactic nuclei and the spectrum of the X-ray background,” Astronomy and Astrophysics, vol. 224, pp. L21–L23, 1989.
[35]
E. Treister, C. M. Urry, and S. Virani, “The space density of compton thick AGN and the X-ray background,” Astrophysical Journal, vol. 696, pp. 110–120, 2009.
[36]
A. R. Draper and D. R. Ballantyne, “Balancing the cosmic energy budget: the cosmic X-ray background, blazars, and the compton thick active galactic nucleus fraction,” Astrophysical Journal, vol. 707, no. 1, pp. 778–786, 2009.
[37]
D. Burlon, M. Ajello, J. Greiner, A. Comastri, A. Merloni, and N. Gehrels, “Three-year swift-BAT survey of active galactic nuclei: reconciling theory and observations?” Astrophysical Journal, vol. 728, p. 58, 2011.
[38]
E. Treister and C. Megan Urry, “Active galactic nuclei unification and the X-ray background,” Astrophysical Journal, vol. 630, no. 1, pp. 115–121, 2005.
[39]
R. Gilli, A. Comastri, and G. Hasinger, “The synthesis of the cosmic X-ray background in the Chandra and XMM-Newton era,” Astronomy and Astrophysics, vol. 463, no. 1, pp. 79–96, 2007.
[40]
G. Hinshaw, J. L. Weiland, R. S. Hill et al., “Five-year wilkinson microwave anisotropy probe observations: data processing, sky maps and basic results,” Astrophysical Journal Supplement Series, vol. 180, no. 2, pp. 225–245, 2009.
[41]
J. C. Manners, Obscuration and X-ray variability of active galactic nuclei, Ph.D. thesis, University of Edinburgh, 2002.
[42]
J. J. Condon, Q. F. Yin, T. X. Thuan, and T. Boller, “The ROSAT/IRAS galaxy sample revisited,” Astronomical Journal, vol. 116, no. 6, pp. 2682–2716, 1998.
[43]
G. A. Shields, “Thermal continuum from accretion disks in quasars,” Nature, vol. 272, no. 5655, pp. 706–708, 1978.
[44]
M. A. Malkan and W. L. W. Sargent, “The ultraviolet excess of Seyfert 1 galaxies and quasars,” Astrophysical Journal, vol. 254, pp. 22–37, 1982.
[45]
M. Schmidt and R. F. Green, “Quasar evolution derived from the Palomar bright quasar survey and other complete quasar surveys,” Astrophysical Journal, vol. 269, pp. 352–374, 1983.
[46]
B. J. Boyle, T. Shanks, S. M. Croom et al., “The 2dF QSO Redshift Survey-I. The optical luminosity function of quasi-stellar objects,” Monthly Notices of the Royal Astronomical Society, vol. 317, no. 4, pp. 1014–1022, 2000.
[47]
G. T. Richards, X. Fan, D. P. Schneider et al., “Colors of 2625 quasars at 0 < z < 5 measured in the sloan digital sky survey photometric system,” Astronomical Journal, vol. 121, no. 5, pp. 2308–2330, 2001.
[48]
G. T. Richards, A. D. Myers, A. G. Gray et al., “Efficient photometric selection of quasars from the sloan digital sky survey. II. ~1,000,000 quasars from data release 6,” Astrophysical Journal Supplement Series, vol. 180, no. 1, pp. 67–83, 2009.
[49]
D. E. Vanden Berk, G. T. Richards, A. Bauer et al., “Composite quasar spectra from the sloan digital sky survey,” Astronomical Journal, vol. 122, no. 2, pp. 549–564, 2001.
[50]
L. J. Kewley, B. Groves, G. Kauffmann, and T. Heckman, “The host galaxies and classification of active galactic nuclei,” Monthly Notices of the Royal Astronomical Society, vol. 372, no. 3, pp. 961–976, 2006.
[51]
G. Kauffmann, T. M. Heckman, C. Tremonti et al., “The host galaxies of active galactic nuclei,” Monthly Notices of the Royal Astronomical Society, vol. 346, no. 4, pp. 1055–1077, 2003.
[52]
L. J. Kewley, M. A. Dopita, R. S. Sutherland, C. A. Heisler, and J. Trevena, “Theoretical modeling of starburst galaxies,” Astrophysical Journal, vol. 556, no. 1, pp. 121–140, 2001.
[53]
S. M. Croom, G. T. Richards, T. Shanks et al., “The 2dF-SDSS LRG and QSO survey: the QSO luminosity function at 0.4 < z < 2.6,” Monthly Notices of the Royal Astronomical Society, vol. 399, no. 4, pp. 1755–1772, 2009.
[54]
S. M. Croom, R. J. Smith, B. J. Boyle et al., “The 2dF QSO Redshift Survey-XII. The spectroscopic catalogue and luminosity function,” Monthly Notices of the Royal Astronomical Society, vol. 349, no. 4, pp. 1397–1418, 2004.
[55]
G. T. Richards, S. M. Croom, S. F. Anderson et al., “The 2dF-SDSS LRG and QSO (2SLAQ) Survey: the z < 2.1 quasar luminosity function from 5645 quasars to g = 21.85,” Monthly Notices of the Royal Astronomical Society, vol. 360, no. 3, pp. 839–852, 2005.
[56]
G. T. Richards, M. A. Strauss, X. Fan et al., “The sloan digital sky survey quasar survey: Quasar luminosity function from data release 3,” Astronomical Journal, vol. 131, no. 6, pp. 2766–2787, 2006.
[57]
E. Glikman, S. G. Djorgovski, D. Stern, A. Dey, B. T. Jannuzi, and K.-S. Lee, “The faint end of the Quasar luminosity function at z ~ 4: implications for ionization of the intergalactic medium and cosmic downsizing,” Astrophysical Journal, vol. 728, p. L26, 2011.
[58]
E. Glikman, M. Bogosavljevi?, S. G. Djorgovski et al., “The faint end of the quasar luminosity function at z~ 4,” Astrophysical Journal, vol. 710, no. 2, pp. 1498–1514, 2010.
[59]
H. Ikeda, T. Nagao, K. Matsuoka, et al., “Probing the faint end of the Quasar luminosity function at z ~ 4 in the COSMOS field,” Astrophysical Journal, vol. 728, p. L25, 2011.
[60]
B. Siana, M. Del Carmen Polletta, H. E. Smith et al., “High-redshift QSOs in the swire surveyand the z ~ 3 QSO luminosity function,” Astrophysical Journal, vol. 675, no. 1, pp. 49–70, 2008.
[61]
D. E. Gruber, J. L. Matteson, L. E. Peterson, and G. V. Jung, “The spectrum of diffuse cosmic hard X-rays measured with HEAO 1,” Astrophysical Journal, vol. 520, no. 1, pp. 124–129, 1999.
[62]
A. De Luca and S. Molendi, “The 2-8 keV cosmic X-ray background spectrum as observed with XMM-Newton,” Astronomy and Astrophysics, vol. 419, no. 3, pp. 837–848, 2004.
[63]
E. Churazov, R. Sunyaev, M. Revnivtsev et al., “INTEGRAL observations of the cosmic X-ray background in the 5-100 keV range via occultation by the Earth,” Astronomy and Astrophysics, vol. 467, no. 2, pp. 529–540, 2007.
[64]
M. Ajello, J. Greiner, G. Sato et al., “Cosmic X-Ray background and Earth albedo spectra with swift bat,” Astrophysical Journal, vol. 689, no. 2, pp. 666–677, 2008.
[65]
S. F. H?nig and T. Beckert, “Active galactic nuclei dust tori at low and high luminosities,” Monthly Notices of the Royal Astronomical Society, vol. 380, no. 3, pp. 1172–1176, 2007.
[66]
J. Tueller, R. F. Mushotzky, S. Barthelmy et al., “Swift bat survey of AGNs,” Astrophysical Journal, vol. 681, no. 1, pp. 113–127, 2008.
[67]
R. Krivonos, M. Revnivtsev, A. Lutovinov, S. Sazonov, E. Churazov, and R. Sunyaev, “INTEGRAL/IBIS all-sky survey in hard X-rays,” Astronomy and Astrophysics, vol. 475, no. 2, pp. 775–784, 2007.
[68]
A. Malizia, J. B. Stephen, L. Bassani, A. J. Bird, F. Panessa, and P. Ubertini, “The fraction of Comptonthick sources in an INTEGRAL complete AGN sample,” Monthly Notices of the Royal Astronomical Society, vol. 399, pp. 944–951, 2009.
[69]
F. A. Harrison, et al., “The nuclear spectroscopic telescope array (NuSTAR),” in Proceedings of the Space Telescopes and Instrumentation: Ultraviolet to Gamma Ray, vol. 7732 of Proceedings of SPIE, July 2010.
[70]
P. Tozzi, R. Gilli, V. Mainieri et al., “X-ray spectral properties of active galactic nuclei in the Chandra Deep Field South,” Astronomy and Astrophysics, vol. 451, no. 2, pp. 457–474, 2006.
[71]
M. Schmidt, “3C 273: a star-like object with large red-shift,” Nature, vol. 197, no. 4872, p. 1040, 1963.
[72]
K. I. Kellermann, R. Sramek, M. Schmidt, D. B. Shaffer, and R. Green, “VLA observations of objects in the Palomar Bright Quasar Survey,” Astronomical Journal, vol. 98, pp. 1195–1207, 1989.
[73]
M. C. Begelman, R. D. Blandford, and M. J. Rees, “Theory of extragalactic radio sources,” Reviews of Modern Physics, vol. 56, no. 2, pp. 255–351, 1984.
[74]
D. B. Sanders, E. S. Phinney, G. Neugebauer, B. T. Soifer, and K. Matthews, “Continuum energy distributionof quasars—shapes and origins,” Astrophysical Journal, vol. 347, pp. 29–51, 1989.
[75]
E. Treister, C. N. Cardamone, K. Schawinski et al., “Heavily obscured agn in star-forming galaxies at z? 2,” Astrophysical Journal, vol. 706, no. 1, pp. 535–552, 2009.
[76]
P. Ranalli, A. Comastri, and G. Setti, “The 2-10 keV luminosity as a star formation rate indicator,” Astronomy and Astrophysics, vol. 399, no. 1, pp. 39–50, 2003.
[77]
D. M. Alexander, R. R. Chary, A. Pope et al., “Reliable identification of compton-thick quasars at z≈2: spitzer mid-infrared spectroscopy of HDF-oMD49,” Astrophysical Journal, vol. 687, no. 2, pp. 835–847, 2008.
[78]
F. Fiore, et al., “Chasing highly obscured QSOs in the COSMOS field,” The Astrophysical Journal, vol. 693, pp. 447–462, 2009.
[79]
B. Yencho, A. J. Barger, L. Trouille, and L. M. Winter, “The optx project. II. hard X-ray luminosity functions of active galactic nuclei for z? 5,” Astrophysical Journal, vol. 698, no. 1, pp. 380–396, 2009.
[80]
R. Della Ceca, A. Caccianiga, P. Severgnini et al., “The cosmological properties of AGN in the XMM-Newton Hard Bright Survey,” Astronomy and Astrophysics, vol. 487, no. 1, pp. 119–130, 2008.
[81]
J. A. Baldwin, M. M. Phillips, and R. Terlevich, “Classification parameters for the emission-line spectra of extragalactic objects,” Astronomical Society of the Pacific, vol. 93, pp. 5–19, 1981.
[82]
A. D. Montero-Dorta, D. J. Croton, R. Yan et al., “The DEEP2 Galaxy Redshift Survey: the red sequence AGN fraction and its environment and redshift dependence,” Monthly Notices of the Royal Astronomical Society, vol. 392, no. 1, pp. 125–134, 2009.
[83]
M. Brusa, R. Gilli, F. Civano, A. Comastri, R. Fiore, and C. Vignali, “Identification of (high-redshift) AGN with WFXT: lessons from COSMOS and CDFS,” Memorie della Societa Astronomica Italiana Supplementi, vol. 17, p. 106, 2011.
[84]
J. D. Silverman, P. J. Green, W. A. Barkhouse et al., “The luminosity function of X-ray-selected active galactic nuclei: evolution of supermassive black holes at high redshift,” Astrophysical Journal, vol. 679, no. 1, pp. 118–139, 2008.
[85]
J. Ebrero, F. J. Carrera, M. J. Page et al., “The XMM-Newton serendipitous survey VI. The X-ray luminosity function,” Astronomy and Astrophysics, vol. 493, no. 1, pp. 55–69, 2009.
[86]
J. Aird, K. Nandra, E. S. Laird, et al., “The evolution of the hard X-ray luminosity function of AGN,” Monthly Notices of the Royal Astronomical Society, vol. 401, pp. 2531–2551, 2010.
[87]
M. Brusa, A. Comastri, R. Gilli, et al., “High-redshift quasars in the COSMOS survey: the space density of z > 3 X-ray selected QSOs,” Astrophysical Journal, vol. 693, pp. 8–22, 2009.
[88]
X. Fan, C. L. Carilli, and B. Keating, “Observational constraints on cosmic reionization,” Annual Review of Astronomy and Astrophysics, vol. 44, pp. 415–462, 2006.
[89]
M. Elvis, T. Maccacaro, A. S. Wilson, et al., “Seyfert galaxies as X-ray sources,” Monthly Notices of the Royal Astronomical Society, vol. 183, pp. 129–157, 1978.
[90]
F. E. Bauer, D. M. Alexander, W. N. Brandt et al., “The fall of active galactic nuclei and the rise of star-forming galaxies: a close look at the Chandra Deep Field X-ray number counts,” Astronomical Journal, vol. 128, no. 5, pp. 2048–2065, 2004.
[91]
E. Treister, C. Megan Urry, E. Chatzichristou et al., “Obscured active galactic nuclei and the X-RAY, optical, and far-infrared number counts of active galactic nuclei in the goods fields,” Astrophysical Journal, vol. 616, no. 1, pp. 123–135, 2004.
[92]
S. Sazonov, M. Revnivtsev, R. Krivonos, E. Churazov, and R. Sunyaev, “Hard X-ray luminosity function and absorption distribution of nearby AGN: INTEGRAL all-sky survey,” Astronomy and Astrophysics, vol. 462, no. 1, pp. 57–66, 2007.
[93]
G. T. Richards, M. Lacy, L. J. Storrie-Lombardi et al., “Spectral energy distributions and multiwavelength selection of type 1 quasars,” Astrophysical Journal Supplement Series, vol. 166, no. 2, pp. 470–497, 2006.
[94]
M. Haas, U. Klaas, S. A. H. Müller et al., “The ISO view of Palomar-Green quasars,” Astronomy and Astrophysics, vol. 402, no. 1, pp. 87–111, 2003.
[95]
E. Treister, C. M. Urry, J. Van Duyne et al., “Spitzer number counts of active galactic nuclei in the goods fields,” Astrophysical Journal, vol. 640, no. 2, pp. 603–611, 2006.
[96]
E. Glikman, D. J. Helfand, and R. L. White, “A near-infrared spectral template for quasars,” Astrophysical Journal, vol. 640, no. 2, pp. 579–591, 2006.
[97]
M. Nenkova, Z. Ivezi?, and M. Elitzur, “Dust emission from active galactic nuclei,” Astrophysical Journal, vol. 570, no. 1, pp. L9–L12, 2002.
[98]
E. Treister, J. H. Krolik, and C. Dullemond, “Measuring the fraction of obscured quasars by the infrared luminosity of unobscured quasars,” Astrophysical Journal, vol. 679, no. 1, pp. 140–148, 2008.
[99]
C. N. Cardamone, C. M. Urry, M. Damen et al., “Mid-infrared properties and color selection for X-ray-detected active galactic nuclei in the MUSYC Extended Chandra Deep Field-South,” Astrophysical Journal, vol. 680, no. 1, pp. 130–142, 2008.
[100]
M. Schmidt, “Space distribution and luminosity functions of Quasi-Stellar radio sources,” Astrophysical Journal, vol. 151, p. 393, 1968.
[101]
H. L. Marshall, “The evolution of optically selected quasars with Z less than 2.2 and B less than 20,” Astrophysical Journal, vol. 299, pp. 109–121, 1985.
[102]
G. Mathez, “Evolution of the luminosity function of quasars—a model with constant density and luminosity evolution,” Astronomy & Astrophysics, vol. 53, pp. 15–21, 1976.
[103]
G. Hasinger, T. Miyaji, and M. Schmidt, “Luminosity-dependent evolution of soft X-ray selected AGN: new Chandra and XMM-Newton surveys,” Astronomy and Astrophysics, vol. 441, no. 2, pp. 417–434, 2005.
[104]
Y. Ueda, M. Akiyama, K. Ohta, and T. Miyaji, “Cosmological evolution of the hard X-ray active galactic nucleus luminosity function and the origin of the hard X-ray background,” Astrophysical Journal, vol. 598, no. 2, pp. 886–908, 2003.
[105]
A. J. Barger, L. L. Cowie, R. F. Mushotzky et al., “The cosmic evolution of hard X-ray-selected active galactic nuclei,” Astronomical Journal, vol. 129, no. 2, pp. 578–609, 2005.
[106]
S. Cristiani, D. M. Alexander, F. Bauer et al., “The space density of high-redshift QSOs in the Great Observatories Origins Deep Survey,” Astrophysical Journal, vol. 600, no. 2, pp. L119–L122, 2004.
[107]
X. Fan, V. K. Narayanan, R. H. Lupton et al., “A survey of z > 5.8 quasars in the sloan digital sky survey. I. Discovery of three new quasars and the spatial density of luminous quasars at z~ 6,” Astronomical Journal, vol. 122, no. 6, pp. 2833–2849, 2001.
[108]
C. J. Willott, P. Delorme, C. Reylé et al., “The Canada-France high-z quasar survey: nine new quasars and the luminosity function at redshift 6,” Astronomical Journal, vol. 139, no. 3, pp. 906–918, 2010.
[109]
F. Civano, et al., “The population of high-redshift active galactic nuclei in the Chandra-COSMOS survey,” Astrophysical Journal, vol. 741, p. 91, 2011.
[110]
R. Maiolino and G. H. Rieke, “Low-luminosity and obscured seyfert nuclei in nearby galaxies,” Astrophysical Journal, vol. 454, no. 1, pp. 95–105, 1995.
[111]
D. R. Ballantyne, J. E. Everett, and N. Murray, “Connecting galaxy evolution, star formation, and the cosmic X-ray background,” Astrophysical Journal, vol. 639, no. 2, pp. 740–752, 2006.
[112]
A. T. Steffen, A. J. Barger, L. L. Cowie, R. F. Mushotzky, and Y. Yang, “The changing active galactic nucleus population,” Astrophysical Journal, vol. 596, no. 1, pp. L23–L26, 2003.
[113]
C. Simpson, “The luminosity dependence of the type 1 active galactic nucleus fraction,” Monthly Notices of the Royal Astronomical Society, vol. 360, no. 2, pp. 565–572, 2005.
[114]
A. Akylas and I. Georgantopoulos, “Can photo-ionisation explain the decreasing fraction of X-ray obscured AGN with luminosity?” Astronomy and Astrophysics, vol. 479, no. 3, pp. 735–740, 2008.
[115]
E. Treister, S. Virani, E. Gawiser, et al., “Optical spectroscopy of X-ray sources in the extended Chandra deep field south,” Astrophysical Journal, vol. 693, pp. 1713–1727, 2009.
[116]
R. Barvainis, “Hot dust and the near-infrared bump in the continuum spectra of quasars and active galactic nuclei,” Astrophysical Journal, vol. 320, pp. 537–544, 1987.
[117]
F. L. A. Franca, F. Fiore, A. Comastri et al., “The HELLAS2XMM survey. VII. The hard X-ray luminosity function of AGNs up to z = 4: More absorbed AGNs at low luminosities and high redshifts,” Astrophysical Journal, vol. 635, no. 2, pp. 864–879, 2005.
[118]
G. Hasinger, “Absorption properties and evolution of active galactic nuclei,” Astronomy and Astrophysics, vol. 490, no. 3, pp. 905–922, 2008.
[119]
A. Akylas, I. Georgantopoulos, A. Georgakakis, S. Kitsionas, and E. Hatziminaoglou, “XMM-Newton and Chandra measurements of the AGN intrinsic absorption: dependence on luminosity and redshift,” Astronomy and Astrophysics, vol. 459, no. 3, pp. 693–701, 2006.
[120]
D. Lutz, R. Maiolino, H. W. W. Spoon, and A. F. M. Moorwood, “The relation between AGN hard X-ray emission and mid-infrared continuum from ISO spectra: scatter and unification aspects,” Astronomy and Astrophysics, vol. 418, no. 2, pp. 465–473, 2004.
[121]
J. J. Bock, K. A. Marsh, M. E. Ressler, and M. W. Werner, “High-resolution mid-infrared imaging of the nucleus of NGC 1068,” Astrophysical Journal, vol. 504, no. 1, pp. L5–L10, 1998.
[122]
J. T. Radomski, R. K. Pi?a, C. Packham et al., “Resolved mid-infrared emission in the narrow-line region of NGC 4151,” Astrophysical Journal, vol. 587, no. 1, pp. 117–122, 2003.
[123]
W. Saunders, M. Rowan-Robinson, A. Lawrence, et al., “The 60-micron and far-infrared luminosity functions of IRAS galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 242, pp. 318–337, 1990.
[124]
K. Iwasawa, D. B. Sanders, A. S. Evans, N. Trentham, G. Miniutti, and H. W. W. Spoon, “Fe K emission in the ultraluminous infrared galaxy Arp 220,” Monthly Notices of the Royal Astronomical Society, vol. 357, pp. 565–571, 2005.
[125]
C. K. Seyfert, “Nuclear emission in spiral nebulae,” Astrophysical Journal, vol. 97, p. 28, 1943.
[126]
G. Risaliti, R. Maiolino, and M. Salvati, “The distribution of absorbing column densities among Seyfert 2 galaxies,” Astrophysical Journal, vol. 522, no. 1, pp. 157–164, 1999.
[127]
J. B. de Veny, W. H. Osborn, and K. Janes, “A catalogue of quasars,” Astronomical Society of the Pacific, vol. 83, p. 611, 1971.
[128]
G. Matt, A. C. Fabian, M. Guainazzi, K. Iwasawa, L. Bassani, and G. Malaguti, “The X-ray spectra of compton-thick Seyfert 2 galaxies as seen by BeppoSAX,” Monthly Notices of the Royal Astronomical Society, vol. 318, pp. 173–179, 2000.
[129]
M. H. K. de Grijp, G. K. Miley, J. Lub, and T. De Jong, “Infrared Seyferts: a new population of active galaxies?” Nature, vol. 314, no. 6008, pp. 240–242, 1985.
[130]
C. Winkler, T. J. L. Courvoisier, G. Di Cocco et al., “The INTEGRAL mission,” Astronomy and Astrophysics, vol. 411, no. 1, pp. L1–L6, 2003.
[131]
N. Gehrels, G. Chincarini, P. Giommi et al., “The Swift gamma-ray burst mission,” Astrophysical Journal, vol. 611, no. 2, pp. 1005–1020, 2004.
[132]
P. Ubertini, F. Lebrun, G. Di Cocco et al., “IBIS: the imager on-board INTEGRAL,” Astronomy and Astrophysics, vol. 411, no. 1, pp. L131–L139, 2003.
[133]
P. Vignati, S. Molendi, G. Matt et al., “BeppoSAX unveils the nuclear component in NGC 6240,” Astronomy and Astrophysics, vol. 349, no. 2, pp. L57–L60, 1999.
[134]
N. A. Levenson, T. M. Heckman, J. H. Krolik, K. A. Weaver, and P. T. Zycki, “Penetrating the deep cover of compton-thick active galactic nuclei,” Astrophysical Journal, vol. 648, no. 1, pp. 111–127, 2006.
[135]
G. Ghisellini, F. Haardt, and G. Matt, “The contribution of the obscuring torus to the X-ray spectrum of Seyfert galaxies—a test for the unification model,” Monthly Notices of the Royal Astronomical Society, vol. 267, p. 743, 1994.
[136]
D. M. Alexander, W. N. Brandt, A. E. Hornschemeier et al., “The Chandra deep field north survey. VI. The nature of the optically faint X-ray source population,” Astronomical Journal, vol. 122, no. 5, pp. 2156–2176, 2001.
[137]
A. J. Barger, L. L. Cowie, P. Capak et al., “Optical and infrared properties of the 2 Ms Chandra Deep Field North X-ray sources,” Astronomical Journal, vol. 126, no. 2, pp. 632–665, 2003.
[138]
V. Mainieri, D. Rigopoulou, I. Lehmann et al., “Submillimetre detection of a high-redshift type 2 QSO,” Monthly Notices of the Royal Astronomical Society, vol. 356, no. 4, pp. 1571–1575, 2005.
[139]
I. Georgantopoulos, A. Akylas, A. Georgakakis, and M. Rowan-Robinson, “The Compton-thick AGN in the Chandra Deep Field North,” Astronomy and Astrophysics, vol. 507, no. 2, pp. 747–756, 2009.
[140]
E. Daddi, D. M. Alexander, M. Dickinson et al., “Multiwavelength study of massive galaxies at z~ 2. II. Widespread compton-thick active galactic nuclei and the concurrent growth of black holes and bulges,” Astrophysical Journal, vol. 670, no. 1, pp. 173–189, 2007.
[141]
F. Fiore, A. Grazian, P. Santini et al., “Unveiling obscured accretion in the Chandra Deep Field-South,” Astrophysical Journal, vol. 672, no. 1, pp. 94–101, 2008.
[142]
I. Georgantopoulos, A. Georgakakis, M. Rowan-Robinson, and E. Rovilos, “Searching for mid-IR obscured AGN in the Chandra deep field North,” Astronomy and Astrophysics, vol. 484, no. 3, pp. 671–678, 2008.
[143]
J. L. Donley, G. H. Rieke, P. G. Pérez-González, and G. Barro, “Spitzer's contribution to the AGN population,” Astrophysical Journal, vol. 687, no. 1, pp. 111–132, 2008.
[144]
A. Pope, R. S. Bussmann, A. Dey et al., “The nature of faint Spitzer-selected dust-obscured galaxies,” Astrophysical Journal, vol. 689, no. 1, pp. 127–133, 2008.
[145]
A. Georgakakis, M. Rowan-Robinson, K. Nandra, J. Digby-North, P. G. Pérez-González, and G. Barro, “Infrared excess sources: compton thick QSOs, low-luminosity seyferts or starbursts?” Monthly Notices of the Royal Astronomical Society, vol. 406, no. 1, pp. 420–433, 2010.
[146]
M. Salvato, G. Hasinger, O. Ilbert et al., “Photometric redshift and classification for the XMM-cosmos sources,” Astrophysical Journal, vol. 690, no. 2, pp. 1250–1263, 2009.
[147]
C. N. Cardamone, P. G. Van Dokkum, C. M. Urry et al., “The multiwavelength Survey by Yale-Chile (MUSYC): deep medium-band optical imaging and high-quality 32-band photometric redshifts in the ECDF-S,” Astrophysical Journal Supplement Series, vol. 189, no. 2, pp. 270–285, 2010.
[148]
P. F. Hopkins, L. Hernquist, T. J. Cox, and D. Kerbs, “A cosmological framework for the co-evolution of quasars, supermassive black holes, and elliptical galaxies. i. galaxy mergers and quasar activity,” Astrophysical Journal Supplement Series, vol. 175, no. 2, pp. 356–389, 2008.
[149]
J. S. Kartaltepe, D. B. Sanders, E. Le Floc'H et al., “A multiwavelength study of a sample of 70 μm selected galaxies in the cosmos field. I. Spectral energy distributions and luminosities,” Astrophysical Journal, vol. 709, no. 2, pp. 572–596, 2010.
[150]
E. Treister, C. M. Urry, K. Schawinski, C. N. Cardamone, and D. B. Sanders, “Heavily obscured active galactic nuclei in high-redshift luminous infrared galaxies,” Astrophysical Journal, vol. 722, no. 2, pp. L238–L243, 2010.
[151]
B. Luo, F. E. Bauer, W. N. Brandt et al., “The Chandra deep field-south survey: 2 Ms source catalogs,” Astrophysical Journal Supplement Series, vol. 179, no. 1, pp. 19–36, 2008.
[152]
E. Treister, K. Schawinski, M. Volonteri, P. Natarajan, and E. Gawiser, “Black hole growth in the early Universe is self-regulated and largely hidden from view,” Nature, vol. 474, no. 7351, pp. 356–358, 2011.
[153]
R. J. Bouwens, G. D. Illingworth, J. P. Blakeslee, and M. Franx, “Galaxies at z~ 6: the UV luminosity function and luminosity density from 506 HUDF, HUDF parallel ACS field, and goods i-dropouts,” Astrophysical Journal, vol. 653, no. 1, pp. 53–85, 2006.
[154]
F. Fiore, S. Puccetti, and S. Mathur, “Demography of high redshift,” . In press.
[155]
C. J. Willott, “No evidence of obscured, accreting black holes in most star-forming galaxies,” Astrophysical Journal Letters, vol. 742, no. 1, 2011.
[156]
L. L. Cowie, A. J. Barger, and G. Hasinger, “The faintest X-ray sources from ,” . In press.
[157]
Y. Ueda, S. Eguchi, Y. Terashima et al., “Suzaku observations of active galactic nuclei detected in the SWIFT BAT survey: discovery of a "new type" of buried supermassive black holes,” Astrophysical Journal, vol. 664, no. 2 II, pp. L79–L82, 2007.
[158]
R. Gilli, J. Su, C. Norman, et al., “A Compton-thick active galactic nucleus at in the 4 Ms Chandra deep field south,” The Astrophysical Journal Letters, vol. 730, no. 2, p. L28, 2011.
[159]
M. Volonteri and N. Y. Gnedin, “Relative role of stars and quasars in cosmic reionization,” Astrophysical Journal, vol. 703, no. 2, pp. 2113–2117, 2009.
[160]
C. A. Faucher-GIGUèRE, A. Lidz, L. Hernquist, and M. Zaldarriaga, “Evolution of the intergalactic opacity: implications for the ionizing background, cosmic star formation, and quasar activity,” Astrophysical Journal, vol. 688, no. 1, pp. 85–107, 2008.
[161]
P. Salucci, E. Szuszkiewicz, P. Monaco, and L. Danese, “Mass function of dormant black holes and the evolution of active galactic nuclei,” Monthly Notices of the Royal Astronomical Society, vol. 307, no. 3, pp. 637–644, 1999.
[162]
Q. Yu and S. Tremaine, “Observational constraints on growth of massive black holes,” Monthly Notices of the Royal Astronomical Society, vol. 335, no. 4, pp. 965–976, 2002.
[163]
A. Marconi, G. Risaliti, R. Gilli, L. K. Hunt, R. Maiolino, and M. Salvati, “Local supermassive black holes, relics of active galactic nuclei and the X-ray background,” Monthly Notices of the Royal Astronomical Society, vol. 351, no. 1, pp. 169–185, 2004.
[164]
F. Shankar, P. Salucci, G. L. Granato, G. De Zotti, and L. Danese, “Supermassive black hole demography: the match between the local and accreted mass functions,” Monthly Notices of the Royal Astronomical Society, vol. 354, no. 4, pp. 1020–1030, 2004.
[165]
P. Natarajan and E. Treister, “Is there an upper limit to black hole masses?” Monthly Notices of the Royal Astronomical Society, vol. 393, no. 3, pp. 838–845, 2009.
[166]
F. Shankar, D. H. Weinberg, and J. Miralda-Escudé, “Self-consistent models of the AGN and black hole populations: duty cycles, accretion rates, and the mean radiative efficiency,” Astrophysical Journal, vol. 690, no. 1, pp. 20–41, 2009.
[167]
M. Vestergaard and B. M. Peterson, “Determining central black hole masses in distant active galaxies and quasars. II. Improved optical and UV scaling relationships,” Astrophysical Journal, vol. 641, no. 2, pp. 689–709, 2006.
[168]
R. J. McLure and J. S. Dunlop, “The cosmological evolution of quasar black hole masses,” Monthly Notices of the Royal Astronomical Society, vol. 352, no. 4, pp. 1390–1404, 2004.
[169]
M. Vestergaard, “Early growth and efficient accretion of massive black holes at high redshift,” Astrophysical Journal, vol. 601, no. 2, pp. 676–691, 2004.
[170]
B. C. Kelly, M. Vestergaard, X. Fan, P. Hopkins, L. Hernquist, and A. Siemiginowska, “Constraints on black hole growth, quasar lifetimes, and Eddington ratio distributions from the SDSS broad-line quasar black hole mass function,” Astrophysical Journal, vol. 719, no. 2, pp. 1315–1334, 2010.
[171]
J. A. Kollmeier, C. A. Unken, C. S. Kochanek et al., “Black hole masses and eddington ratios at 0.3 < z < 4,” Astrophysical Journal, vol. 648, no. 1, pp. 128–139, 2006.
[172]
J. R. Trump, et al., “Observational limits on type 1 active galactic nucleus accretion rate in COSMOS,” The Astrophysical Journal, vol. 700, pp. 49–55, 2009.
[173]
P. Natarajan, “The formation and evolution of massive black hole seeds in the early universe,” Bulletin of the Astronomical Society of India, vol. 39, no. 1, pp. 145–161, 2011.
[174]
G. Lodato and P. Natarajan, “The mass function of high-redshift seed black holes,” Monthly Notices of the Royal Astronomical Society, vol. 377, no. 1, pp. L64–L68, 2007.
[175]
D. R. Ballantyne, A. R. Draper, K. K. Madsen, J. R. Rigby, and E. Treister, “Lifting the veil on obscured accretion: active galactic nuclei number counts and survey strategies for imaging hard X-ray missions,” Astrophysical Journal, vol. 736, no. 1, p. 56, 2011.
[176]
T. Takahashi, K. Mitsuda, R. Kelley et al., “The ASTRO-H mission,” in Proceedings of the Space Telescopes and Instrumentation: Ultraviolet to Gamma Ray, vol. 7732 of Proceedings of SPIE, 2010.
[177]
L. Yao, E. R. Seaquist, N. Kuno, and L. Dunne, “CO molecular gas in infrared-luminous galaxies,” Astrophysical Journal, vol. 588, no. 2, pp. 771–791, 2003.