全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Principle Component Analysis of Galaxy Properties from a Large, Gas-Selected Sample

DOI: 10.1155/2012/208901

Full-Text   Cite this paper   Add to My Lib

Abstract:

Disney et al. (2008) have found a striking correlation among global parameters of HI-selected galaxies and concluded that this is in conflict with the CDM model. Considering the importance of the issue, we reinvestigate the problem using the principal component analysis on a fivefold larger sample and additional near-infrared data. We use databases from the Arecibo Legacy Fast Arecibo -band Feed Array Survey for the gas properties, the Sloan Digital Sky Survey for the optical properties, and the Two Micron All Sky Survey for the near-infrared properties. We confirm that the parameters are indeed correlated where a single physical parameter can explain 83% of the variations. When color ( ) is included, the first component still dominates but it develops a second principal component. In addition, the near-infrared color ( ) shows an obvious second principal component that might provide evidence of the complex old star formation. Based on our data, we suggest that it is premature to pronounce the failure of the CDM model and it motivates more theoretical work. 1. Introduction One way to understand our universe is to gain insights into the structure of galaxies. For one thing, it helps to reveal the role of dark matter in their formation and dynamics. The cosmological model that consists of a cosmological constant and the cold dark matter in addition to the ordinary baryon matter and radiation ( CDM) has been able to successfully explain the evolution of the cosmic structures especially at large scales. By measuring CMB fluctuations COBE [4, 5], WMAP [6–9], Type Ia supernovae [10], and gravitational lensing [11], this model of cosmology has by now been established as the standard model of cosmology. Among its various implications, it suggests a hierarchical, bottom-up history of structure formation that evolves from small fluctuations to galaxies, clusters, and eventually superclusters. On the other side, the success of CDM has not been as clearcut at small scales. There still exist several inconsistencies between CDM and the observations at small scales. For example, the simulations based on CDM have revealed more number of galactic satellites [12–15] and less number of disk galaxies [16] than what have been observed. Besides, the degree of emptiness in the voids is also inconsistent between theory and observation [17]. While the CDM can explain the galaxy rotational curves at large radii [18], the relatively higher density at the galactic core than that predicted by the CDM, that is, the so-called cusp-core problem, is still unresolved [19]. The

References

[1]  E. N. Taylor, M. Franx, J. Brinchmann, A. Van Der Wel, and P. G. Van Dokkum, “On the masses of galaxies in the local universe,” Astrophysical Journal Letters, vol. 722, no. 1, pp. 1–19, 2010.
[2]  D. A. Wake, M. Franx, and P. G. van Dokkum, “Which galaxy property is the best indicator of its host dark matter halo properties?” http://arxiv.org/abs/1201.1913.
[3]  D. A. Wake, P. G. van Dokkum, and M. Franx, “Revealing velocity dispersion as the best indicator of a galaxy's color, compared to stellar mass, surface mass density or morphology,” http://arxiv.org/abs/1201.4998.
[4]  G. F. Smoot, C. L. Bennett, A. Kogut et al., “Structure in the COBE differential microwave radiometer first-year maps,” Astrophysical Journal Letters, vol. 396, no. 1, pp. L1–L5, 1992.
[5]  C. L. Bennett, A. Kogut, G. Hinshaw et al., “Cosmic temperature fluctuations from two years of COBE differential microwave radiometers observations,” Astrophysical Journal Letters, vol. 436, no. 2, pp. 423–442, 1994.
[6]  C. L. Bennett, M. Halpern, G. Hinshaw et al., “First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: preliminary maps and basic results,” Astrophysical Journal, vol. 148, no. 1, pp. 1–27, 2003.
[7]  C. L. Bennett, R. S. Hill, G. Hinshaw et al., “First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: foreground emission,” Astrophysical Journal, vol. 148, no. 1, pp. 97–117, 2003.
[8]  E. Komatsu, J. Dunkley, M. R. Nolta et al., “Five-year wilkinson microwave anisotropy probe observations: cosmological interpretation,” Astrophysical Journal, vol. 180, no. 2, pp. 330–376, 2009.
[9]  J. Dunkley, D. N. Spergel, E. Komatsu et al., “Five-year wilkinson microwave anisotropy probe (WMAP) observations: bayesian estimation of cosmic microwave background polarization maps,” Astrophysical Journal Letters, vol. 701, no. 2, pp. 1804–1813, 2009.
[10]  A. G. Riess, A. V. Filippenko, P. Challis et al., “Observational evidence from supernovae for an accelerating universe and a cosmological constant,” Astronomical Journal, vol. 116, no. 3, pp. 1009–1038, 1998.
[11]  F. Zwicky, “On the masses of nebulae and of clusters of nebulae,” Astrophysical Journal, vol. 86, p. 217, 1937.
[12]  B. Moore, S. Ghigna, F. Governato et al., “Dark matter substructure within galactic halos,” Astrophysical Journal Letters, vol. 524, no. 1, pp. L19–L22, 1999.
[13]  A. Klypin, A. V. Kravtsov, O. Valenzuela, and F. Prada, “Where are the missing galactic satellites?” Astrophysical Journal Letters, vol. 522, no. 1, pp. 82–92, 1999.
[14]  J. R. Primack, “Cosmology: small-scale issues,” New Journal of Physics, vol. 11, no. 10, Article ID 105029, 2009.
[15]  A. Kravtsov, “Dark matter substructure and dwarf galactic satellites,” Advances in Astronomy, vol. 2010, Article ID 281913, 2010.
[16]  J. Sommer-Larsen and A. Dolgov, “Formation of disk galaxies: warm dark matter and the angular momentum problem,” Astrophysical Journal Letters, vol. 551, no. 2, pp. 608–623, 2001.
[17]  P. J. E. Peebles, “The void phenomenon,” Astrophysical Journal Letters, vol. 557, no. 2, pp. 495–504, 2001.
[18]  W. J. G. De Blok and S. S. McGaugh, “The dark and visible matter content of low surface brightness disc galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 290, no. 3, pp. 533–552, 1997.
[19]  J. J. Dalcanton and C. J. Hogan, “Halo cores and phase-space densities: observational constraints on dark matter physics and structure formation,” Astrophysical Journal Letters, vol. 561, no. 1, pp. 35–45, 2001.
[20]  S. D. M. White and C. S. Frenk, “Galaxy formation through hierarchical clustering,” Astrophysical Journal Letters, vol. 379, no. 1, pp. 52–79, 1991.
[21]  S. Cole, C. G. Lacey, C. M. Baugh, and C. S. Frenk, “Hierarchical galaxy formation,” Monthly Notices of the Royal Astronomical Society, vol. 319, no. 1, pp. 168–204, 2000.
[22]  C. M. Baugh, “A primer on hierarchical galaxy formation: the semi-analytical approach,” Reports on Progress in Physics, vol. 69, no. 12, article R02, pp. 3101–3156, 2006.
[23]  S. M. Faber and R. E. Jackson, “Velocity dispersions and mass-to-light ratios for elliptical galaxies,” Astrophysical Journal, vol. 204, pp. 668–683, 1976.
[24]  R. B. Tully and J. R. Fisher, “A new method of determining distances to galaxies,” Astronomy and Astrophysics, vol. 54, no. 3, pp. 661–673, 1977.
[25]  G. Gavazzi, D. Pierini, and A. Boselli, “The phenomenology of disk galaxies,” Astronomy and Astrophysics, vol. 312, no. 2, pp. 397–408, 1996.
[26]  M. R. Blanton, D. W. Hogg, N. A. Bahcall et al., “The broadband optical properties of galaxies with redshifts 0.02 < Z < 0.22,” Astrophysical Journal Letters, vol. 594, no. 1 I, pp. 186–207, 2003.
[27]  M. Bernardi, R. K. Sheth, J. Annis et al., “Early-type galaxies in the sloan digital sky survey. II. Correlations between observables,” Astronomical Journal, vol. 125, no. 4, pp. 1849–1865, 2003.
[28]  G. Kauffmann, T. M. Heckman, S. D. M. White et al., “Stellar masses and star formation histories for 105 galaxies from the Sloan Digital Sky Survey,” Monthly Notices of the Royal Astronomical Society, vol. 341, no. 1, pp. 33–53, 2003.
[29]  G. Kauffmann, S. D. M. White, T. M. Heckman et al., “The environmental dependence of the relations between stellar mass, structure, star formation and nuclear activity in galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 353, no. 3, pp. 713–731, 2004.
[30]  M. R. Blanton, M. Geha, and A. A. West, “Testing cold dark matter with the low-mass tully-fisher relation,” Astrophysical Journal Letters, vol. 682, no. 2, pp. 861–873, 2008.
[31]  M. J. Disney, J. D. Romano, D. A. Garcia-Appadoo, A. A. West, J. J. Dalcanton, and L. Cortese, “Galaxies appear simpler than expected,” Nature, vol. 455, no. 7216, pp. 1082–1084, 2008.
[32]  D. A. Garcia-Appadoo, A. A. West, J. J. Dalcanton, L. Cortese, and M. J. Disney, “Correlations among the properties of galaxies found in a blind H i survey, which also have SDSS optical data,” Monthly Notices of the Royal Astronomical Society, vol. 394, no. 1, pp. 340–356, 2009.
[33]  L. Staveley-Smith, W. E. Wilson, T. S. Bird et al., “The Parkes 21?cm multibeam receiver,” Publications of the Astronomical Society of Australia, vol. 13, no. 3, pp. 243–248, 1996.
[34]  R. Giovanelli, M. P. Haynes, B. R. Kent et al., “The arecibo legacy fast alfa survey. III. H I source catalog of the northern virgo cluster region,” Astronomical Journal, vol. 133, no. 6, pp. 2569–2583, 2007.
[35]  A. Saintonge, R. Giovanelli, M. P. Haynes et al., “The arecibo legacy fast alfa survey. V. the H i source catalog of the anti-virgo region at δ = +27°,” Astronomical Journal, vol. 135, no. 2, pp. 588–604, 2008.
[36]  B. R. Kent, R. Giovanelli, M. P. Haynes et al., “The Arecibo legacy fast alfa survey. VI. Second HI source catalog of the Virgo cluster region,” Astronomical Journal, vol. 136, no. 2, pp. 713–724, 2008.
[37]  K. N. Abazajian, J. K. Adelman-Mccarthy, M. A. Agüeros et al., “The seventh data release of the sloan digital sky survey,” Astrophysical Journal, vol. 182, no. 2, pp. 543–558, 2009.
[38]  M. C. Toribio, J. M. Solanes, R. Giovanelli, M. P. Haynes, and K. L. Masters, “H I content and optical properties of field galaxies from the ALFALFA survey. I. Selection of a control sample,” Astrophysical Journal Letters, vol. 732, no. 2, article 92, 2011.
[39]  M. C. Toribio, J. M. Solanes, R. Giovanelli, M. P. Haynes, and A. M. Martin, “H i content and optical properties of field galaxies from the ALFALFA survey. II. Multivariate analysis of a galaxy sample in low-density environments,” Astrophysical Journal Letters, vol. 732, no. 2, article 93, 2011.
[40]  I. T. Jolliffe, Principal Component Analysis, vol. 1, Springer, 1986.
[41]  M. F. Skrutskie, R. M. Cutri, R. Stiening et al., “The two Micron All Sky Survey (2MASS),” Astronomical Journal, vol. 131, no. 2, pp. 1163–1183, 2006.
[42]  J. Brinchmann, S. Charlot, S. D. M. White et al., “The physical properties of star-forming galaxies in the low-redshift Universe,” Monthly Notices of the Royal Astronomical Society, vol. 351, no. 4, pp. 1151–1179, 2004.
[43]  J. L. Rosenberg, S. E. Schneider, and J. Posson-Brown, “Gas and stars in an H I-selected galaxy sample,” Astronomical Journal, vol. 129, no. 3, pp. 1311–1330, 2005.
[44]  A. Chung, J. H. van Gorkom, J. D. Kenney, H. Crowl, and B. Vollmer, “VLA imaging of virgo spirals in atomic gas (VIVA). I. The atlas and the H i properties,” Astronomical Journal, vol. 138, no. 6, pp. 1741–816, 2009.
[45]  N. Yasuda, M. Fukugita, V. K. Narayanan et al., “Galaxy number counts from the Sloan Digital Sky Survey commissioning data,” Astronomical Journal, vol. 122, no. 3, pp. 1104–1124, 2001.
[46]  M. J. Meyer, M. A. Zwaan, R. L. Webster et al., “The HIPASS catalogue—I. Data presentation,” Monthly Notices of the Royal Astronomical Society, vol. 350, no. 4, pp. 1195–1209, 2004.
[47]  K. Abazajian, J. K. Adelman-McCarthy, M. A. Agüeros et al., “The second data release of the sloan digital sky survey,” Astronomical Journal, vol. 128, no. 1, pp. 502–512, 2004.
[48]  A. A. West, D. A. Garcia-Appadoo, J. J. Dalcanton, et al., “H i-Selected Galaxies in the Sloan Digital Sky Survey. II. The colors of Gas-Rich galaxies,” Astronomical Journal, vol. 138, no. 3, pp. 796–807, 2009.
[49]  A. A. West, D. A. Garcia-Appadoo, J. J. Dalcanton et al., “H I-selected galaxies in the sloan digital sky survey. I. Optical data,” Astronomical Journal, vol. 139, no. 2, pp. 315–328, 2010.
[50]  V. Petrosian, “Surface brightness and evolution of galaxies,” Astrophysical Journal, vol. 209, pp. L1–L5, 1976.
[51]  M. R. Blanton, J. Dalcanton, D. Eisenstein et al., “The luminosity function of galaxies in SDSS commissioning data,” Astronomical Journal, vol. 121, no. 5, pp. 2358–2380, 2001.
[52]  A. A. West, H i selected galaxies in the sloan digital sky survey, Ph.D. thesis, University of Washington, 2005.
[53]  M. Cappellari, R. Bacon, M. Bureau et al., “The SAURON project—IV. The mass-to-light ratio, the virial mass estimator and the Fundamental Plane of elliptical and lenticular galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 366, no. 4, pp. 1126–1150, 2006.
[54]  M. R. Blanton, D. J. Schlegel, M. A. Strauss et al., “New York University Value-Added Galaxy Catalog: a galaxy catalog based on new public surveys,” Astronomical Journal, vol. 129, no. 6, pp. 2562–2578, 2005.
[55]  I. Strateva, ?. Ivezi?, G. R. Knapp et al., “Color separation of galaxy types in the Sloan Digital Sky Survey imaging data,” Astronomical Journal, vol. 122, no. 4, pp. 1861–1874, 2001.
[56]  P. C. van der Kruit, “The three-dimensional distribution of light and mass in disks of spiral galaxies,” Astronomy and Astrophysics, vol. 192, no. 1-2, pp. 117–127, 1988.
[57]  M. R. Blanton, D. W. Hogg, N. A. Bahcall et al., “The galaxy luminosity function and luminosity density at redshift ,” Astrophysical Journal Letters, vol. 592, no. 2 I, pp. 819–838, 2003.
[58]  M. P. Haynes and R. Giovanelli, “Neutral hydrogen in isolated galaxies. IV—results for the Arecibo ample,” Astronomical Journal, vol. 89, pp. 758–800, 1984.
[59]  J. Kormendy, “Integrated colors of bright galaxies in the u, b, V system,” Astrophysical Journal, vol. 218, p. 333, 1977.
[60]  M. S. Longair, Galaxy Formation, vol. 1, Springer, 2000.
[61]  J. Kormendy and R. C. Kennicutt, “Secular evolution and the formation of pseudobulges in disk galaxies,” Annual Review of Astronomy and Astrophysics, vol. 42, pp. 603–683, 2004.
[62]  R. G. Bower, A. J. Benson, R. Malbon et al., “Breaking the hierarchy of galaxy formation,” Monthly Notices of the Royal Astronomical Society, vol. 370, no. 2, pp. 645–655, 2006.
[63]  J. Kormendy, D. B. Fisher, M. E. Cornell, and R. Bender, “Structure and formation of elliptical and spheroidal galaxies,” Astrophysical Journal, vol. 182, no. 1, pp. 216–309, 2009.
[64]  F. Fontanot, G. De Lucia, P. Monaco, R. S. Somerville, and P. Santini, “The many manifestations of downsizing: hierarchical galaxy formation models confront observations,” Monthly Notices of the Royal Astronomical Society, vol. 397, no. 4, pp. 1776–1790, 2009.
[65]  M. A. Zwaan, J. M. van der Hulst, W. J. G. de Blok, and S. S. McGaugh, “The Tully-Fisher relation for low surface brightness galaxies: implications for galaxy evolution,” Monthly Notices of the Royal Astronomical Society, vol. 273, pp. L35–L38, 1998.
[66]  S. S. McGauon and W. J. G. De Blok, “Testing the hypothesis of modified dynamics with low surface brightness galaxies and other evidence,” Astrophysical Journal Letters, vol. 499, no. 1, pp. 66–81, 1998.
[67]  R. Reyes, R. Mandelbaum, J. E. Gunn, J. Pizagno, and C. N. Lackner, “Calibrated Tully-Fisher relations for improved estimates of disk rotation velocities,” http://arxiv.org/abs/1106.1650.
[68]  G. de Vaucouleurs, “Integrated colors of bright galaxies in the u, b, V system,” Astrophysical Journal Supplement Series, vol. 5, p. 233, 1961.
[69]  R. B. Tully, J. R. Mould, and M. Aaronson, “A colormagnitude relation for spiral galaxies,” Astrophysical Journal, vol. 257, pp. 527–537, 1982.
[70]  D. W. Hogg, M. R. Blanton, J. Brinchmann et al., “The dependence on environment of the color-magnitude relation of galaxies,” Astrophysical Journal, vol. 601, no. 1, pp. L29–L32, 2004.
[71]  Y. Chen, J. D. Lowenthal, and M. S. Yun, “Color-magnitude relation and morphology of low-redshift ulirgs in sloan digital sky survey,” Astrophysical Journal Letters, vol. 712, no. 2, pp. 1385–1402, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133