Unification Models of Active Galactic Nuclei postulate that all the observed differences between type 1 and type 2 objects are due to orientation effects with respect to the line of sight to the observer. The key ingredient of these models is the obscuring medium, historically envisaged as a toroidal structure on a parsec scale. However, many results obtained in the last few years are clearly showing the need for a more complex geometrical distribution of the absorbing media. In this paper, we review the various pieces of evidence for obscuring media on different scales, from the vicinity of the black hole to the host galaxy, in order to picture an updated unification scenario explaining the complex observed phenomenology. We conclude by mentioning some of the open issues. 1. Introduction: The Standard Unified Model In this paper, we discuss the recent developments on the AGN unified models, specifically for what concern the geometry, location, and physics of the absorbing medium. Before discussing the more recent results, in this section we shortly review the early, classical arguments that historically led to the formulation of the standard Unified Model. An early review of the initial results was also given in Antonucci [1]. The first unification attempts have been focussed on polarization measurements. In particular Antonucci [2] found a perpendicular alignment of optical polarization relative to the radio axis in a sample of radio galaxies, which was interpreted as due to scattering of photons, whose direction before entering the line of sight was primarily in the vertical direction. Shortly after, additional evidence was found in low luminosity, local AGN, and specifically Seyfert galaxies [3]. Seyfert 1 galaxies are characterized by the presence of broad optical permitted lines ( ?km/s), such as H and H , that are not observed in Seyfert 2 galaxies. However, the presence of both strong high ionization and low ionization narrow ( ?km/s) forbidden lines (such as [O?III], [Ne?III], [O?II], [O?I], [N?II], [S?II]), and several very high ionization coronal lines (such as [Fe?X], [Fe?XI], [Si?IX], [Si?X]) is common to both types of Seyfert galaxies and with similar line ratios. The latter finding suggested that all Seyfert galaxies are powered by the same intrinsic engine. A strong observational evidence of a unification between type 2 and type 1 Seyfert nuclei has been the discovery of broad optical lines in the polarized spectrum of the archetypal Seyfert 2, NGC 1068, obtained by Antonucci and Miller [4]. This finding revealed the presence of a Broad
References
[1]
R. Antonucci, “Unified models for active galactic nuclei and quasars,” Annual Review of Astronomy and Astrophysics, vol. 31, no. 1, pp. 473–521, 1993.
[2]
R. R. J. Antonucci, “Optical spectropolarimetry of radio galaxies,” The Astrophysical Journal, vol. 278, pp. 499–520, 1984.
[3]
C. K. Seyfert, “Nuclear emission in spiral nebulae,” The Astrophysical Journal, vol. 97, p. 28, 1943.
[4]
R. R. J. Antonucci and J. S.. Miller, “Diffuse pulmonary hemorrhage: a review and classification,” The Astrophysical Journal, vol. 297, pp. 621–632, 1985.
[5]
J. H. Krolik and M. C. Begelman, “An X-ray heated wind in NGC 1068,” The Astrophysical Journal, vol. 308, pp. L55–L58, 1986.
[6]
J. H. Krolik and M. C. Begelman, “Molecular tori in seyfert galaxies—feeding the monster and hiding it,” The Astrophysical Journal, vol. 329, pp. 702–711, 1988.
[7]
S. Kaspi, D. Maoz, H. Netzer, B. M. Peterson, M. Vestergaard, and B. T. Jannuzi, “The relationship between luminosity and broad-line region size in active galactic nuclei,” The Astrophysical Journal, vol. 629, no. 1, pp. 61–71, 2005.
[8]
B. M. Peterson, “Reverberation mapping of active galactic nuclei,” Publications of the Astronomical Society of the Pacific, vol. 105, pp. 247–268, 1993.
[9]
H. D. Tran, “Hidden broad-line Seyfert 2 galaxies in the CfA and 12?μm samples,” Astrophysical Journal Letters, vol. 554, no. 1, pp. L19–L23, 2001.
[10]
S. Veilleux, R.-W. Goodrich, and G. J. Hill, “Infrared spectroscopy of seyfert 2 galaxies: a look through the obscuring torus? II,” The Astrophysical Journal, vol. 477, article 631, 1997.
[11]
S. Veilleux, R.-W. Goodrich, and G. J. Hill, “Infrared spectroscopy of seyfert 2 galaxies: a look through the obscuring torus? II,” The Astrophysical Journal, vol. 477, no. 2, pp. 631–660, 1997.
[12]
N. M. Nagar, E. Oliva, A. Marconi, and R. Maiolino, “NGC 5506 unmasked as a narrow line Seyfert 1: a direct view of the broad line region using near-IR spectroscopy,” Astronomy and Astrophysics, vol. 391, no. 2, pp. L21–L24, 2002.
[13]
D. Lutz, R. Maiolino, A. F. M. Moorwood, et al., “Infrared spectroscopy around 4?mu?m of Seyfert 2 galaxies: Obscured broad line regions and coronal lines,” Astronomy and Astrophysics, vol. 396, pp. 439–448, 2002.
[14]
R. Riffel, A. Rodríguez-Ardila, and M. G. Pastoriza, “A 0.8-2.4?μm spectral atlas of active galactic nuclei,” Astronomy and Astrophysics, vol. 457, no. 1, pp. 61–70, 2006.
[15]
H.-B. Cai, X.-W. Shu, Z.-Y. Zheng, and J. X. Wang, “The study of Seyfert 2 galaxies with and without infrared broad lines,” Research in Astronomy and Astrophysics, vol. 10, no. 5, pp. 427–437, 2010.
[16]
D. A. Smith and C. Done, “Unified theories of active galactic nuclei: a hard X-ray sample of Seyfert 2 galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 280, no. 2, pp. 355–377, 1996.
[17]
T. J. Turner, I. M. George, K. Nandra, and R. F. Mushotzky, “ASCA observations of type 2 seyfert galaxies. I. Data analysis results,” The Astrophysical Journal Supplement Series, vol. 113, no. 1, article 23, 1997.
[18]
R. Maiolino, M. Salvati, L. Bassani et al., “Heavy obscuration in X-ray weak AGNs,” Astronomy and Astrophysics, vol. 338, no. 3, pp. 781–794, 1998.
[19]
L. Bassani, M. Dadina, R. Maiolino et al., “A three-dimensional diagnostic diagram for Seyfert 2 galaxies: probing X-ray absorption and compton thickness,” Astrophysical Journal, Supplement Series, vol. 121, no. 2, pp. 473–482, 1999.
[20]
G. Matt, M. Guainazzi, F. Frontera et al., “Hard X-ray detection of NGC 1068 with BeppoSAX,” Astronomy and Astrophysics, vol. 325, no. 2, pp. L13–L16, 1997.
[21]
G. Matt, M. Guainazzi, R. Maiolino et al., “One more surprise from the circinus galaxy: beppoSAX discovery of a transmission component in hard X-rays,” Astronomy and Astrophysics, vol. 341, no. 2, pp. L39–L42, 1999.
[22]
R. W. Pogge, “Extended ionized gas in the Seyfert 2 galaxy NGC 4388,” The Astrophysical Journal, vol. 332, pp. 702–710, 1988.
[23]
I. N. Evans, H. C. Ford, A. L. Kinney, R. R. J. Antonucci, L. Armus, and S. Caganoff, “HST imaging of the inner 3 arcseconds of NGC 1068 in the light of [O III] λ5007,” The Astrophysical Journal, vol. 369, no. 2, pp. L27–L30, 1991.
[24]
A. S. Wilson and Z. I. Tsvetanov, “Ionization cones and radio ejecta in active galaxies,” Astronomical Journal, vol. 107, no. 4, pp. 1227–1234, 1994.
[25]
F. K. B. Barbosa, T. Storchi-Bergmann, R. C. Fernandes, C. Winge, and H. Schmitt, “Gemini/GMOS IFU gas velocity 'tomography' of the narrow line region of nearby active galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 396, no. 1, pp. 2–18, 2009.
[26]
R. Maiolino and G. H. Rieke, “Low-luminosity and obscured seyfert nuclei in nearby galaxies,” The Astrophysical Journal, vol. 454, no. 1, pp. 95–105, 1995.
[27]
N. M. Nagar, A. S. Wilson, J. S. Mulchaey, and J. F. Gallimore, “Radio structures of Seyfert galaxies. VIII. A distance- and magnitude-limited sample of early-type galaxies,” Astrophysical Journal, Supplement Series, vol. 120, no. 2, pp. 209–245, 1999.
[28]
E. A. Pier and J. H. Krolik, “Radiation-pressure-supported obscuring tori around active galactic nuclei,” The Astrophysical Journal, vol. 399, no. 1, pp. L23–L26, 1992.
[29]
G. L. Granato, L. Danese, and A. Franceschini, “Thick tori around active galactic nuclei: the case for extended tori and consequences for their X-ray and infrared emission,” The Astrophysical Journal, vol. 486, no. 1, pp. 147–159, 1997.
[30]
J. H. Krolik, “AGN obscuring tori supported by infrared radiation pressure,” The Astrophysical Journal, vol. 661, no. 1, pp. 52–59, 2007.
[31]
K. Wada and K. Tomisaka, “Molecular gas structure around an active galactic nucleus with nuclear starburst: three-dimensional non-LTE calculations of CO lines,” The Astrophysical Journal, vol. 619, no. 1 I, pp. 93–104, 2005.
[32]
Y. Watabe and M. Umemura, “Obscuration of active galactic nuclei by circumnuclear starbursts,” The Astrophysical Journal, vol. 618, no. 2 I, pp. 649–656, 2005.
[33]
S. Nayakshin, “Warped accretion discs and the unification of active galactic nuclei,” Monthly Notices of the Royal Astronomical Society, vol. 359, no. 2, pp. 545–550, 2005.
[34]
A. Caproni, Z. Abraham, and H. J. Mosquera Cuesta, “Bardeen-petterson effect and the disk structure of the seyfert galaxy NGC 1068,” The Astrophysical Journal, vol. 638, no. 1 I, pp. 120–124, 2006.
[35]
A. Caproni, M. Livio, Z. Abraham, and H. J. M. Cuesta, “Warping and precession in galactic and extragalactic accretion disks,” The Astrophysical Journal, vol. 653, no. 1 I, pp. 112–126, 2006.
[36]
A. Lawrence and M. Elvis, “Misaligned disks as obscurers in active galaxies,” The Astrophysical Journal, vol. 714, no. 1, pp. 561–570, 2010.
[37]
M. Elitzur and I. Shlosman, “The AGN-obscuring torus: the end of the "doughnut" paradigm?” The Astrophysical Journal, vol. 648, no. 2, pp. L101–L104, 2006.
[38]
M. Nenkova, M. M. Sirocky, R. Nikutta, Z. Ivezi, and M. Elitzur, “AGN dusty Tori. II. observational implications of clumpiness,” The Astrophysical Journal, vol. 685, no. 1, pp. 160–180, 2008.
[39]
S. F. H?nig and T. Beckert, “Active galactic nuclei dust tori at low and high luminosities,” Monthly Notices of the Royal Astronomical Society, vol. 380, no. 3, pp. 1172–1176, 2007.
[40]
S. F. H?nig and M. Kishimoto, “The dusty heart of nearby active galaxies: II. from clumpy torus models to physical properties of dust around AGN,” Astronomy and Astrophysics, vol. 523, no. 2, article no. A27, 2010.
[41]
G. Risaliti, “The BeppoSAX view of bright compton-thin Seyfert 2 galaxies,” Astronomy and Astrophysics, vol. 386, no. 2, pp. 379–398, 2002.
[42]
G. Risaliti, M. Elvis, G. Fabbiano, A. Baldi, and A. Zezas, “Rapid compton-thick/compton-thin transitions in the seyfert 2 galaxy NGC 1365,” The Astrophysical Journal, vol. 623, no. 2, pp. L93–L96, 2005.
[43]
G. Risaliti, M. Elvis, G. Fabbiano, A. Baldi, A. Zezas, and M. Salvati, “Occultation measurement of the size of the X-ray-emitting region in the active galactic nucleus of NGC 1365,” The Astrophysical Journal, vol. 659, no. 2, pp. L111–L114, 2007.
[44]
G. Risaliti, M. Salvati, M. Elvis et al., “The XMM-Newton long look of NGC 1365: uncovering of the obscured X-ray source,” Monthly Notices of the Royal Astronomical Society, vol. 393, no. 1, pp. L1–L5, 2009.
[45]
R. Maiolino, G. Risaliti, M. Salvati et al., “Comets orbiting a black hole,” Astronomy and Astrophysics, vol. 517, no. 6, article A47, 2010.
[46]
M. Elvis, G. Risaliti, F. Nicastro, J. M. Miller, F. Fiore, and S. Puccetti, “An unveiling event in the type 2 active galactic nucleus NGC 4388: a challenge for a parsec-scale absorber,” The Astrophysical Journal, vol. 615, no. 1, pp. L25–L28, 2004.
[47]
S. Puccetti, F. Fiore, G. Risaliti, M. Capalbi, M. Elvis, and F. Nicastro, “Rapid NH changes in NGC 4151,” Monthly Notices of the Royal Astronomical Society, vol. 377, no. 2, pp. 607–616, 2007.
[48]
S. Bianchi, E. Piconcelli, M. Chiaberge, E. J. Bailon, G. Matt, and F. Fiore, “How complex is the obscuration in active galactic nuclei? New clues from the suzaku monitoring of the X-ray absorbers in NGC 7582,” The Astrophysical Journal, vol. 695, no. 1, pp. 781–787, 2009.
[49]
G. Risaliti, E. Nardini, M. Salvati et al., “X-ray absorption by broad-line region clouds in Mrk 766,” Monthly Notices of the Royal Astronomical Society, vol. 410, no. 2, pp. 1027–1035, 2011.
[50]
R. Maiolino, A. Marconi, M. Salvati et al., “Dust in active nuclei I. Evidence for "anomalous" properties,” Astronomy and Astrophysics, vol. 365, no. 2, pp. 28–36, 2001.
[51]
T. Maccacaro, G. C. Perola, and M. Elvis, “X-ray observations of emission line galaxies with the einstein observatory,” Space Science Reviews, vol. 30, no. 1–4, pp. 61–65, 1981.
[52]
T. Maccacaro, G. C. Perola, and M. Elvis, “X-ray observations with the Einstein Observatory of emission-line galaxies,” The Astrophysical Journal, vol. 257, p. 47, 1982.
[53]
S. Bianchi, G. Matt, I. Balestra, and G. C. Perola, “The origin of the iron lines in NGC 7213,” Astronomy and Astrophysics, vol. 407, no. 2, pp. L21–L24, 2003.
[54]
S. Bianchi, G. Matt, I. Balestra, M. Guainazzi, and G. C. Perola, “X-ray reprocessing in Seyfert galaxies: simultaneous XMM-Newton/BeppoSAX observations,” Astronomy and Astrophysics, vol. 422, no. 1, pp. 65–76, 2004.
[55]
A. P. Lobban, J. N. Reeves, D. Porquet, et al., “Evidence for a truncated accretion disc in the low-luminosity Seyfert galaxy, NGC 7213?” Monthly Notices of the Royal Astronomical Society, vol. 408, no. 1, pp. 551–564, 2010.
[56]
S. Bianchi, F. La Franca, G. Matt et al., “A broad-line region origin for the iron Kα line in NGC 7213,” Monthly Notices of the Royal Astronomical Society, vol. 389, no. 1, pp. L52–L56, 2008.
[57]
T. Storchi-Bergmann, J. S. Mulchaey, and A. S. Wilson, “Infrared emission in Seyfert 2 galaxies: reprocessed radiation from a dusty torus?” The Astrophysical Journal, vol. 395, no. 2, pp. L73–L77, 1992.
[58]
A. Alonso-Herrero, A. C. Quillen, C. Simpson, A. Efstathiou, and M. J. Ward, “The nonstellar infrared continuum of seyfert galaxies,” Astronomical Journal, vol. 121, no. 3, pp. 1369–1384, 2001.
[59]
E. Oliva, L. Origlia, R. Maiolino, and A. F. M. Moorwood, “Starbursts in active galaxy nuclei: observational constraints from IR stellar absorption lines,” Astronomy and Astrophysics, vol. 350, no. 1, pp. 9–16, 1999.
[60]
M. Suganuma, Y. Yoshii, Y. Kobayashi et al., “Reverberation measurements of the inner radius of the dust torus in nearby seyfert 1 galaxies,” The Astrophysical Journal, vol. 639, no. 1, pp. 46–63, 2006.
[61]
R. Maiolino, O. Shemmer, M. Imanishi et al., “Dust covering factor, silicate emission, and star formation in luminous QSOs,” Astronomy and Astrophysics, vol. 468, no. 3, pp. 979–992, 2007.
[62]
E. Treister, J. H. Krolik, and C. Dullemond, “Measuring the fraction of obscured quasars by the infrared luminosity of unobscured quasars,” The Astrophysical Journal, vol. 679, no. 1, pp. 140–148, 2008.
[63]
L. J. Greenhill, C. R. Gwinn, R. Antonucci, and R. Barvainis, “VLBI imaging of water maser emission from the nuclear torus of NGC 1068,” The Astrophysical Journal, vol. 472, no. 1, pp. L21–L24, 1996.
[64]
L. J. Greenhill, J. M. Moran, and J. R. Herrnstein, “The distribution of H2O maser emission in the nucleus of NGC 4945,” The Astrophysical Journal, vol. 481, no. 1, pp. L23–L26, 1997.
[65]
L. J. Greenhill, P. T. Kondratko, J. E. J. Lovell et al., “The discovery of H2O maser emission in seven active galactic nuclei and at high velocities in the Circinus galaxy,” The Astrophysical Journal, vol. 582, no. 1, pp. L11–L14, 2003.
[66]
P. T. Kondratko, L. J. Greenhill, and J. M. Moran, “The parsec-scale accretion disk in NGC 3393,” The Astrophysical Journal, vol. 678, no. 1, pp. 87–95, 2008.
[67]
P. T. Kondratko, L. J. Greenhill, and J. M. Moran, “Evidence for a geometrically thick self-gravitating accretion disk in NGC 3079,” The Astrophysical Journal, vol. 618, no. 2, pp. 618–634, 2005.
[68]
J. F. Gallimore, S. A. Baum, and C. P. O'Dea, “A direct image of the obscuring disk surrounding an active galactic nucleus,” Nature, vol. 388, no. 6645, pp. 852–854, 1997.
[69]
W. Jaffe, K. Meisenheimer, H. J. A. R?ttgering et al., “The central dusty torus in the active nucleus of NGC 1068,” Nature, vol. 429, no. 6987, pp. 47–49, 2004.
[70]
D. Raban, W. Jaffe, H. R?ttgering, K. Meisenheimer, and K. R. W. Tristram, “Resolving the obscuring torus in NGC 1068 with the power of infrared interferometry: revealing the inner funnel of dust,” Monthly Notices of the Royal Astronomical Society, vol. 394, no. 3, pp. 1325–1337, 2009.
[71]
K. R. W. Tristram, K. Meisenheimer, W. Jaffe et al., “Resolving the complex structure of the dust torus in the active nucleus of the Circinus galaxy,” Astronomy and Astrophysics, vol. 474, no. 3, pp. 837–850, 2007.
[72]
L. Burtscher, W. Jaffe, D. Raban, K. Meisenheimer, K. R. W. Tristram, and H. R?ttgering, “Dust emission from a parsec-scale structure in the seyfert 1 nucleus of NGC 4151,” The Astrophysical Journal, vol. 705, no. 1, pp. L53–L57, 2009.
[73]
K. R. W. Tristram, D. Raban, K. Meisenheimer et al., “Parsec-scale dust distributions in Seyfert galaxies Results of the MIDI AGN snapshot survey,” Astronomy and Astrophysics, vol. 502, no. 1, pp. 67–84, 2009.
[74]
K. R. W. Tristram and M. Schartmann, “On the size-luminosity relation of AGN dust tori in the mid-infrared,” Astronomy and Astrophysics, vol. 531, article A99, 2011.
[75]
M. Kishimoto, S. F. Honig, R. Antonucci, et al., “The innermost dusty structure in active galactic nuclei as probed by the Keck interferometer,” Astronomy & Astrophysics, vol. 527, article A121, 2011.
[76]
G. C. Perola, G. Matt, M. Cappi et al., “Compton reflection and iron fluorescence in BeppoSAX observations of Seyfert type 1 galaxies,” Astronomy and Astrophysics, vol. 389, no. 3, pp. 802–811, 2002.
[77]
S. Bianchi, M. Guainazzi, G. Matt, N. Fonseca Bonilla, and G. Ponti, “CAIXA: a catalogue of AGN in the XMM-Newton archive: I. Spectral analysis,” Astronomy and Astrophysics, vol. 495, no. 2, pp. 421–430, 2009.
[78]
I. De La Calle Pérez, A. L. Longinotti, M. Guainazzi et al., “FERO: finding extreme relativistic objects: I. Statistics of relativistic Fe Kα lines in radio-quiet Type 1 AGN,” Astronomy and Astrophysics, vol. 524, no. 2, article no. A50, 2010.
[79]
K. Nandra, P. M. O'Neill, I. M. George, and J. N. Reeves, “An XMM-Newton survey of broad iron lines in Seyfert galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 382, no. 1, pp. 194–228, 2007.
[80]
K. Nandra, “On the origin of the iron Ko line cores in active galactic nuclei,” Monthly Notices of the Royal Astronomical Society, vol. 368, pp. L62–L66, 2006.
[81]
X. W. Shu, T. Yaqoob, and J. X. Wang, “Chandra High-energy Grating Observations of the Fe Kα Line Core in Type II Seyfert Galaxies: A Comparison with Type I Nuclei,” The Astrophysical Journal, vol. 738, p. 147, 2011.
[82]
R. Gilli, R. Maiolino, A. Marconi et al., “The variability of the Seyfert galaxy NGC 2992: the case for a revived AGN,” Astronomy and Astrophysics, vol. 355, no. 2, pp. 485–498, 2000.
[83]
G. Matt, S. Bianchi, M. Guainazzi et al., “Chandra and XMM-Newton observations of Tololo 0109-383,” Astronomy and Astrophysics, vol. 399, no. 2, pp. 519–523, 2003.
[84]
M. Nenkova, Z. Ivezi, and M. Elitzur, “Dust emission from active galactic nuclei,” The Astrophysical Journal, vol. 570, no. 1, pp. L9–L12, 2002.
[85]
M. Elitzur and I. Shlosman, “The AGN-obscuring torus: the end of the "doughnut" paradigm?” The Astrophysical Journal, vol. 648, no. 2, pp. L101–L104, 2006.
[86]
S. F. H?nig, T. Beckert, K. Ohnaka, and G. Weigelt, “Radiative transfer modeling of three-dimensional clumpy AGN tori and its application to NGC 1068,” Astronomy and Astrophysics, vol. 452, no. 2, pp. 459–471, 2006.
[87]
G. L. Granato and L. Danese, “Thick tori around active galactic nuclei—a comparison of model predictions with observations of the infrared continuum and silicate features,” Monthly Notices of the Royal Astronomical Society, vol. 268, no. 1, p. 235, 1994.
[88]
R. Maiolino, “Prospects for AGN studies with ALMA,” New Astronomy Reviews, vol. 52, no. 6, pp. 339–357, 2008.
[89]
Y. Shi, G. H. Rieke, D. C. Hines et al., “9.7 μm silicate features in active galactic nuclei: new insights into unification models,” The Astrophysical Journal, vol. 653, no. 1 I, pp. 127–136, 2006.
[90]
R. Nikutta, M. Elitzur, and M. Lacy, “On the 10 μm silicate feature in active galactic nuclei,” The Astrophysical Journal, vol. 707, no. 2, pp. 1550–1559, 2009.
[91]
G. Matt, “Dust lanes, thick absorbers, and the unification model for Seyfert galaxies,” Astronomy and Astrophysics, vol. 355, no. 2, pp. L31–L33, 2000.
[92]
C. D. P. Lagos, N. D. Padilla, M. A. Strauss, S. A. Cora, and L. Hao, “Host galaxy-active galactic nucleus alignments in the sloan digital sky survey data release 7,” Monthly Notices of the Royal Astronomical Society, vol. 414, no. 3, pp. 2148–2162, 2011.
[93]
M. A. Malkan, V. Gorjian, and R. Tam, “A hubble space telescope 1 imaging survey of nearby active galactic nuclei,” Astrophysical Journal, Supplement Series, vol. 117, no. 1, pp. 25–88, 1998.
[94]
M. Guainazzi, G. Matt, and G. C. Perola, “X-ray obscuration and obscured AGN in the local universe,” Astronomy and Astrophysics, vol. 444, no. 1, pp. 119–132, 2005.
[95]
S. Bianchi, M. Chiaberge, E. Piconcelli, and M. Guainazzi, “A multiwavelength map of the nuclear region of NGC 7582,” Monthly Notices of the Royal Astronomical Society, vol. 374, no. 2, pp. 697–702, 2007.
[96]
E. Schinnerer, A. Eckart, L. J. Tacconi, R. Genzel, and D. Downes, “Bars and warps traced by the molecular gas in the Seyfert 2 galaxy NGC 1068,” The Astrophysical Journal, vol. 533, no. 2, pp. 850–868, 2000.
[97]
F. Boone, S. García-Burillo, F. Combes et al., “High-resolution mapping of the physical conditions in two nearby active galaxies based on 12CO(1-0), (2-1), and (3-2) lines,” Astronomy and Astrophysics, vol. 525, no. 1, article A18, 2010.
[98]
M. Krips, S. Martin, and A. Eckart, “SMA/PdBI multiple line observations of the nearby Seyfert2 galaxy NGC 1068: shock related gas kinematics and heating in the central 100pc?” The Astrophysical Journal, vol. 736, article 37, 2011.
[99]
M. Polletta, D. Weedman, S. H?nig, C. J. Lonsdale, H. E. Smith, and J. Houck, “Obscuration in extremely luminous quasars,” The Astrophysical Journal, vol. 675, no. 2, pp. 960–984, 2008.
[100]
A. Martínez-Sansigre, S. Rawlings, M. Lacy et al., “A population of high-redshift type 2 quasars - I. Selection criteria and optical spectra,” Monthly Notices of the Royal Astronomical Society, vol. 370, no. 3, pp. 1479–1498, 2006.
[101]
G. Risaliti, R. Maiolino, and M. Salvati, “The distribution of absorbing column densities among Seyfert 2 galaxies,” The Astrophysical Journal, vol. 522, no. 1, pp. 157–164, 1999.
[102]
A. J. Young, A. S. Wilson, and P. L. Shopbell, “A Chandra X-ray study of NGC 1068. I. Observations of extended emission,” The Astrophysical Journal, vol. 556, no. 1, pp. 6–23, 2001.
[103]
C. A. Heisler, S. L. Lumsden, and J. A. Bailey, “Visibility of scattered broad-line emission in Seyfert 2 galaxies,” Nature, vol. 385, no. 6618, pp. 700–702, 1997.
[104]
D. M. Alexander, “The unified model and the Seyfert 2 infrared dichotomy,” Monthly Notices of the Royal Astronomical Society, vol. 320, no. 1, pp. L15–L19, 2001.
[105]
Q. Gu, R. Maiolino, and D. Dultzin-Hacyan, “Nuclear obscuration and scattering in Seyfert 2 galaxies,” Astronomy and Astrophysics, vol. 366, no. 3, pp. 765–770, 2001.
[106]
F. Nicastro, “Broad emission line regions in active galactic nuclei: the link with the accretion power,” The Astrophysical Journal Letters, vol. 530, no. 2, article L65, 2000.
[107]
M. Elitzur and L. C. Ho, “On the disappearance of the broad-line region in low-luminosity active galactic nuclei,” The Astrophysical Journal Letters, vol. 701, no. 2, article L91, 2009.
[108]
J. R. Trump, C. D. Impey, B. C. Kelly, et al., “Accretion rate and the physical nature of unobscured active galaxies,” The Astrophysical Journal, vol. 733, no. 1, article 60, 2011.
[109]
S. Bianchi, A. Corral, F. Panessa et al., “NGC 3147: a “true” type 2 Seyfert galaxy without the broad-line region,” Monthly Notices of the Royal Astronomical Society, vol. 385, no. 1, pp. 195–199, 2008.
[110]
F. Panessa, F. J. Carrera, S. Bianchi et al., “Unabsorbed Seyfert 2 galaxies: the case of “naked” AGN,” Monthly Notices of the Royal Astronomical Society, vol. 398, no. 4, pp. 1951–1960, 2009.
[111]
M. Brightman and K. Nandra, “On the nature of unabsorbed Seyfert 2 galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 390, no. 3, pp. 1241–1249, 2008.
[112]
S. Bianchi, in prep., 2012.
[113]
A. Marinucci, S. Bianchi, F. Nicastro, G. Matt, and A. D. Goulding, “The link between the hidden broad line region and the accretion rate in seyfert 2 galaxies,” The Astrophysical Journal. In press.
[114]
Y. Shi, G. H. Rieke, P. Smith et al., “Unobscured type 2 active galactic nuclei,” The Astrophysical Journal, vol. 714, no. 1, pp. 115–129, 2010.
[115]
F. Nicastro, A. Martocchia, and G. Matt, “The lack of broad-line regions in low accretion rate active galactic nuclei as evidence of their origin in the accretion disk,” The Astrophysical Journal, vol. 589, no. 1, pp. L13–L16, 2003.
[116]
W. Bian and Q. Gu, “The eddington ratios in seyfert 2 galaxies with and without hidden broad-line regions,” The Astrophysical Journal, vol. 657, no. 1, pp. 159–166, 2007.
[117]
X. W. Shu, J. X. Wang, P. Jiang, L. L. Fan, and T. G. Wang, “Investigating the nuclear obscuration in two types of Seyfert 2 galaxies,” The Astrophysical Journal, vol. 657, no. 1 I, pp. 167–176, 2007.
[118]
Y. Wu, E. Zhang, Y. Liang, C. Zhang, and Y. Zhao, “The different nature of seyfert 2 galaxies with and without hidden broad-line regions,” The Astrophysical Journal, vol. 730, no. 2, p. 121, 2011.
[119]
A. Capetti, D. J. Axon, F. Macchetto, W. B. Sparks, and A. Boksenberg, “Radio outflows and the origin of the narrow-line region in seyfert galaxies,” The Astrophysical Journal, vol. 469, no. 2, pp. 554–563, 1996.
[120]
S. Bianchi, M. Chiaberge, D. A. Evans, et al., “High-resolution X-ray spectroscopy and imaging of Mrk 573,” Monthly Notices of the Royal Astronomical Society, vol. 405, no. 1, pp. 553–563, 2010.
[121]
R. W. Goosmann and G. Matt, “Spotting the misaligned outflows in NGC 1068 using X-ray polarimetry,” Monthly Notices of the Royal Astronomical Society, vol. 415, no. 4, pp. 3119–3128, 2011.
[122]
A. C. Fabian, K. Iwasawa, C. S. Reynolds, and A. J. Young, “Broad iron lines in active galactic nuclei,” Publications of the Astronomical Society of the Pacific, vol. 112, no. 775, pp. 1145–1161, 2000.
[123]
M. Guainazzi, S. Bianchi, I. de La Calle Perez, M. Dovciak, and A. L. Longinotti, “On the driver of relativistic effect strength in Seyfert galaxies,” Astronomy & Astrophysics, vol. 531, article A131, 2011.
[124]
G. Risaliti, M. Salvati, and A. Marconi, “[O iii] equivalent width and orientation effects in quasars,” Monthly Notices of the Royal Astronomical Society, vol. 411, no. 4, pp. 2223–2229, 2011.
[125]
Y. Ueda, M. Akiyama, K. Ohta, and T. Miyaji, “Cosmological evolution of the hard X-ray active galactic nucleus luminosity function and the origin of the hard X-ray background,” The Astrophysical Journal, vol. 598, no. 2 I, pp. 886–908, 2003.
[126]
A. T. Steffen, A. J. Barger, L. L. Cowie, R. F. Mushotzky, and Y. Yang, “The changing active galactic nucleus population,” The Astrophysical Journal, vol. 596, no. 1, pp. L23–L26, 2003.
[127]
F. La Franca, F. Fiore, A. Comastri et al., “The HELLAS2XMM survey. VII. The hard X-ray luminosity function of AGNs up to : more absorbed AGNs at low luminosities and high redshifts,” The Astrophysical Journal, vol. 635, no. 2 I, pp. 864–879, 2005.
[128]
A. Akylas, I. Georgantopoulos, A. Georgakakis, S. Kitsionas, and E. Hatziminaoglou, “XMM-Newton and Chandra measurements of the AGN intrinsic absorption: dependence on luminosity and redshift,” Astronomy and Astrophysics, vol. 459, no. 3, pp. 693–701, 2006.
[129]
A. J. Barger and L. L. Cowie, “The number density of intermediate- and high-luminosity active galactic nuclei at ,” The Astrophysical Journal, vol. 635, no. 1 I, pp. 115–122, 2005.
[130]
P. Tozzi, R. Gilli, V. Mainieri et al., “X-ray spectral properties of active galactic nuclei in the Chandra Deep Field South,” Astronomy and Astrophysics, vol. 451, no. 2, pp. 457–474, 2006.
[131]
C. Simpson, “The luminosity dependence of the type 1 active galactic nucleus fraction,” Monthly Notices of the Royal Astronomical Society, vol. 360, no. 2, pp. 565–572, 2005.
[132]
T. Dwelly and M. J. Page, “The distribution of absorption in AGN detected in the XMM-Newton observations of the CDFS,” Monthly Notices of the Royal Astronomical Society, vol. 372, no. 4, pp. 1755–1775, 2006.
[133]
E. Treister and C. M. Urry, “Active galactic nuclei unification and the X-ray background,” The Astrophysical Journal, vol. 630, no. 1 I, pp. 115–121, 2005.
[134]
J.-M. Wang and E.-P. Zhang, “The unified model of active galactic nuclei. II. Evolutionary connection,” The Astrophysical Journal, vol. 660, no. 2 I, pp. 1072–1092, 2007.
[135]
G. Hasinger, “Absorption properties and evolution of active galactic nuclei,” Astronomy and Astrophysics, vol. 490, no. 3, pp. 905–922, 2008.
[136]
R. Della Ceca, A. Caccianiga, P. Severgnini et al., “The cosmological properties of AGN in the XMM-Newton Hard Bright Survey,” Astronomy and Astrophysics, vol. 487, no. 1, pp. 119–130, 2008.
[137]
E. Treister, S. Virani, E. Gawiser, et al., “Optical spectroscopy of x-ray sources in the extended chandra deep field south,” The Astrophysical Journal, vol. 693, no. 2, p. 1713, 2009.
[138]
M. Brusa, F. Civano, A. Comastri et al., “The XMM-newton wide-field survey in the cosmos field (XMM-COSMOS): demography and multiwavelength properties of obscured and unobscured luminous active galactic nuclei,” The Astrophysical Journal, vol. 716, no. 1, pp. 348–369, 2010.
[139]
R. Maiolino, O. Shemmer, M. Imanishi et al., “Dust covering factor, silicate emission, and star formation in luminous QSOs,” Astronomy and Astrophysics, vol. 468, no. 3, pp. 979–992, 2007.
[140]
R. Gilli, A. Comastri, and G. Hasinger, “The synthesis of the cosmic X-ray background in the Chandra and XMM-Newton era,” Astronomy and Astrophysics, vol. 463, no. 1, pp. 79–96, 2007.
[141]
J.-M. Wang, E.-P. Zhang, and B. Luo, “Evolutionary consequences of dusty tori in active galactic nuclei,” The Astrophysical Journal, vol. 627, no. 1, article L5, 2005.
[142]
R. Mor and B. Trakhtenbrot, “Hot-dust clouds with pure-graphite composition around type-i active galactic nuclei,” The Astrophysical Journal Letters, vol. 737, no. 2, p. L36, 2011.
[143]
M. Rowan-Robinson, I. Valtchanov, and K. Nandra, “AGN dust tori: the X-ray-infrared connection,” Monthly Notices of the Royal Astronomical Society, vol. 397, no. 3, pp. 1326–1337, 2009.
[144]
K. Iwasawa and Y. Taniguchi, “The X-ray baldwin effect,” The Astrophysical Journal, vol. 413, no. 1, pp. L15–L18, 1993.
[145]
K. L. Page, P. T. O'Brien, J. N. Reeves, and M. J. L. Turner, “An X-ray Baldwin effect for the narrow Fe Kα lines observed in active galactic nuclei,” Monthly Notices of the Royal Astronomical Society, vol. 347, no. 1, pp. 316–322, 2004.
[146]
P. Jiang, J. X. Wang, and T. G. Wang, “On the X-ray Baldwin effect for narrow Fe Ka emission lines,” The Astrophysical Journal, vol. 644, no. 2, pp. 725–732, 2006.
[147]
M. Guainazzi, S. Bianchi, and M. Dov?iak, “Statistics of relativistically broadened Fe Kα lines in AGN,” Astronomische Nachrichten, vol. 327, no. 10, pp. 1032–1038, 2006.
[148]
S. Bianchi, M. Guainazzi, G. Matt, and N. F. Bonilla, “On the Iwasawa-Taniguchi effect of radio-quiet AGN,” Astronomy and Astrophysics, vol. 467, no. 1, pp. L19–L22, 2007.
[149]
A. Lawrence, “The relative frequency of broad-lined and narrow-lined active galactic nuclei—implications for unified schemes,” Monthly Notices of the Royal Astronomical Society, vol. 252, pp. 586–592, 1991.
[150]
A. Lamastra, G. C. Perola, and G. Matt, “A model for the X-ray absorption in compton-thin AGN,” Astronomy and Astrophysics, vol. 449, no. 2, pp. 551–558, 2006.
[151]
J. Fischer, E. Sturm, E. González-Alfonso et al., “Herschel-PACS spectroscopic diagnostics of local ULIRGs: conditions and kinematics in Markarian 231,” Astronomy and Astrophysics, vol. 518, no. 14676, article L36, 2010.
[152]
C. Feruglio, R. Maiolino, E. Piconcelli et al., “Quasar feedback revealed by giant molecular outflows,” Astronomy and Astrophysics, vol. 518, no. 13, article L155, 2010.
[153]
D. S. N. Rupke and S. Veilleux, “Warm molecular hydrogen in the galactic wind of M82,” The Astrophysical Journal, vol. 729, no. 2, article L27, 2011.
[154]
E. Sturm, E. Gonzalez-Alfonso, S. Veilleux, et al., “Massive molecular outflows and negative feedback in ULIRGs observed by Herschel-PACS,” The Astrophysical Journal, vol. 733, no. 1, p. L16, 2011.
[155]
M. Cano-Diaz, R. Maiolino, A. Marconi, H. Netzer, O. Shemmer, and G. Cresci, “Observational evidence of quasar feedback quenching star formation at high redshift,” Astronomy & Astrophysics, vol. 537, article L8, 2012.
[156]
D. R. Ballantyne, Y. Shi, G. H. Rieke, J. L. Donley, C. Papovich, and J. R. Rigby, “Does the AGN unified model evolve with redshift? Using the X-ray background to predict the mid-infrared emission of AGNs,” The Astrophysical Journal, vol. 653, no. 2, pp. 1070–1088, 2006.
[157]
E. Treister and C. M. Urry, “The evolution of obscuration in active galactic nuclei,” The Astrophysical Journal, vol. 652, pp. L79–L82, 2006.
[158]
L. J. Tacconi, R. Genzel, R. Neri et al., “High molecular gas fractions in normal massive star-forming galaxies in the young Universe,” Nature, vol. 463, no. 7282, pp. 781–784, 2010.
[159]
E. Daddi, F. Bournaud, F. Walter et al., “Very high gas fractions and extended gas reservoirs in disk galaxies,” The Astrophysical Journal, vol. 713, no. 1, pp. 686–707, 2010.
[160]
L. Shao, D. Lutz, R. Nordon et al., “Star formation in AGN hosts in GOODS-N,” Astronomy and Astrophysics, vol. 518, no. 1, article L26, 2010.
[161]
Y. Shi, G. H. Rieke, P. Ogle, L. Jiang, and A. M. Diamond-Stanic, “Cosmic evolution of star formation in type-1 quasar hosts since ,” The Astrophysical Journal, vol. 703, no. 1, pp. 1107–1122, 2009.
[162]
C. Ricci, R. Walter, T. J.-L. Courvoisier, and S. Paltani, “Reflection in Seyfert galaxies and the unified model of AGN,” Astronomy & Astrophysics, vol. 532, article A102, 2011.
[163]
A. Marconi, E. Oliva, P. P. van der Werf et al., “The elusive active nucleus of NGC 4945,” Astronomy and Astrophysics, vol. 357, no. 1, pp. 24–36, 2000.
[164]
R. Della Ceca, L. Ballo, F. Tavecchio et al., “An enshrouded active galactic nucleus in the merging starburst system Arp 299 revealed by BeppoSAX,” The Astrophysical Journal, vol. 581, no. 1, pp. L9–L13, 2002.
[165]
R. Maiolino, A. Comastri, R. Gilli et al., “Elusive active galactic nuclei,” Monthly Notices of the Royal Astronomical Society, vol. 344, no. 4, pp. L59–L64, 2003.
[166]
L. Ballo, V. Braito, R. Della Ceca, L. Maraschi, F. Tavecchio, and M. Dadina, “ARP 299: a second merging system with two active nuclei?” The Astrophysical Journal, vol. 600, no. 2, pp. 634–639, 2004.
[167]
A. Caccianiga, P. Severgnini, R. Della Ceca, T. Maccacaro, F. J. Carrera, and M. J. Page, “Elusive AGN in the XMM-Newton bright serendipitous survey,” Astronomy and Astrophysics, vol. 470, no. 2, pp. 557–570, 2007.
[168]
M. Imanishi, R. Maiolino, and T. Nakagawa, “Spitzer infrared low-resolution spectroscopic study of buried active galactic nuclei in a complete sample of nearby ultraluminous infrared galaxies,” The Astrophysical Journal, vol. 709, no. 2, pp. 801–815, 2010.
[169]
M. Imanishi, C. C. Dudley, R. Maiolino, P. R. Maloney, T. Nakagawa, and G. Risaliti, “A Spitzer IRS low-resolution spectroscopic search for buried AGNs in nearby ultraluminous infrared galaxies: a constraint on geometry between energy sources and dust,” Astrophysical Journal, Supplement Series, vol. 171, no. 1, pp. 77–100, 2007.
[170]
M. Imanishi, “Luminous buried active galactic nuclei as a function of galaxy infrared luminosity revealed through spitzer low-resolution infrared spectroscopy,” The Astrophysical Journal, vol. 694, no. 2, pp. 751–764, 2009.
[171]
G. Risaliti, M. Imanishi, and E. Sani, “A quantitative determination of the AGN content in local ULIRGs through L-band spectroscopy,” Monthly Notices of the Royal Astronomical Society, vol. 401, no. 1, pp. 197–203, 2010.
[172]
E. Nardini, G. Risaliti, M. Salvati et al., “Exploring the active galactic nucleus and starburst content of local ultraluminous infrared galaxies through 5-8 μm spectroscopy,” Monthly Notices of the Royal Astronomical Society, vol. 399, no. 3, pp. 1373–1402, 2009.
[173]
E. Nardini, G. Risaliti, M. Salvati, et al., “Spectral decomposition of starbursts and active galactic nuclei in 5—8?μm Spitzer-IRS spectra of local ultraluminous infrared galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 385, no. 1, pp. L130–L134, 2008.
[174]
D. A. Evans, W.-F. Fong, M. J. Hardcastle, et al., “A Radio through X-Ray Study of the Jet/Companion-Galaxy Interaction in 3C 321,” The Astrophysical Journal, vol. 675, pp. 1057–1066.
[175]
A. D. Goulding and D. M. Alexander, “Towards a complete census of AGN in nearby Galaxies: a large population of optically unidentified AGN,” Monthly Notices of the Royal Astronomical Society, vol. 398, no. 3, pp. 1165–1193, 2009.
[176]
J. P. Perez-Beaupuits, H. W. W. Spoon, M. Spaans, and J. D. Smith, “The deeply obscured AGN of NGC 4945. I. Spitzer-IRS maps of [Ne V], [Ne II], H2 0-0 S(1), S(2), and other tracers,” Astronomy & Astrophysics, vol. 533, article A56, 2011.
[177]
L. Armus, V. Charmandaris, J. Bernard-Salas et al., “Observations of ultraluminous infrared galaxies with the infrared spectrograph on the spitzer space telescope. II. The iras bright galaxy sample,” The Astrophysical Journal, vol. 656, no. 1, pp. 148–167, 2007.
[178]
Y. Ueda, S. Eguchi, Y. Terashima, et al., “Suzaku observations of active galactic nuclei detected in the swift BAT survey: discovery of a "New Type" of buried supermassive black holes,” The Astrophysical Journal, vol. 664, pp. L79–L82, 2007.
[179]
K. Noguchi, Y. Terashima, and H. Awaki, “A new sample of buried active galactic nuclei selected from the second xmm-newton serendipitous source catalogue,” The Astrophysical Journal, vol. 705, no. 1, pp. 454–467, 2009.
[180]
L. Jiang, X. Fan, W. N. Brandt et al., “Dust-free quasars in the early Universe,” Nature, vol. 464, no. 7287, pp. 380–383, 2010.
[181]
H. Hao, M. Elvis, F. Civano et al., “Hot-dust-poor type 1 active galactic nuclei in the COSMOS survey,” The Astrophysical Journal, vol. 724, no. 1, pp. L59–L63, 2010.
[182]
H. Hao, M. Elvis, F. Civano, and A. Lawrence, “Hot-dust-poor quasars in mid-infrared and optically selected samples,” The Astrophysical Journal, vol. 733, no. 2, article 108, 2011.