|
Biomimetic poly(amidoamine) hydrogels as synthetic materials for cell cultureAbstract: A systematic comparative study of the response of an epithelial cell line was performed on hydrogels with agmatine and on non-functionalized amphoteric poly(amidoamine) hydrogels and tissue culture plastic substrates. The cell adhesion on the agmatine containing substrates was comparable to that on plastic substrates and significantly enhanced with respect to the non-functionalized controls. Interestingly, spreading and proliferation on the functionalized supports are slower than on plastic exhibiting the possibility of an easier control of the cell growth kinetics. In order to favor the handling of the samples, a procedure for the production of bi-layered constructs was also developed by means the deposition via spin coating of a thin layer of hydrogel on a pre-treated cover slip.The obtained results reveal that PAAs hydrogels can be profitably functionalized and, in general, undergo physical and chemical modifications to meet specific requirements. In particular the incorporation of agmatine warrants good potential in the field of cell culturing and the development of supported functionalized hydrogels on cover glass are very promising substrates for applications in cell screening devices.In the last years the progress of biological sciences has led to outstanding developments in the field of cell culturing in vitro. Several new techniques, such as cell microarray or cells on chips, require reliable support materials with good biocompatibility and cell adhesion, preferentially disposable and simple to use [1,2]. Among synthetic materials, hydrogels present unique tissue-like properties for interactions with living cells [3,4], such as water content and permeability to oxygen and metabolites. In principle, fully synthetic hydrogels, as opposed to naturally derived media (e.g. gelatin, chitosan, etc.), should be more advantageous, coupling the aforementioned properties with the possibility of complete control over hydrogel composition, cross-linking and swelling. Th
|