The focus of this research is to present a theoretical model of averting actions that households take to avoid exposure to Yersinia enterocolitica in contaminated food. The cost of illness approach only takes into account the value of a cure, while the averting behavior approach can estimate the value of preventing the illness. The household, rather than the individual, is the unit of analysis in this model, where one household member is primarily responsible for procuring uncontaminated food for their family. Since children are particularly susceptible and live with parents who are primary decision makers for sustenance, the designated household head makes the choices that are investigated in this paper. This model uses constrained optimization to characterize activities that may offer protection from exposure to Yersinia enterocolitica contaminated food. A representative household decision maker is assumed to allocate family resources to maximize utility of an altruistic parent, an assumption used in most research involving economics of the family. Yersiniosis remains a public health hazard due to exposure to contaminated food and human to human or zoonotic infections. Yersinia enterocolitica is an important cause of yersiniosis in humans and animals; its epidemiology remains yet to be fully understood and exposure to it is a growing food safety concern [1–5]. There are a number of recent reviews published on specific aspects of Y. enterocolitica, and while some of these studies investigate incidence rates, true incidence in developed and developing countries remain unknown [1, 6–10]. One of the most frequent outcomes of Y. enterocolitica is possibly diarrhea as exemplified by a study in Poland [11]. A study on methods of monitoring trends in incidence of foodborne diseases in the United States is a welcome instrument in the estimation of incidence of Y. enterocolitica and other pathogens [12]. Studies of incidence, combined with studies investigating behaviors of individuals responding to information of incidence and risk levels of Y. enterocolitica can be useful for public health mitigation policies. In this paper we discuss a behavioral model with a focus on avoiding health hazards associated with exposure to Y. enterocolitica. The paper is theoretical and the conceptual model presented here is not showcased with data. The theoretical framework easily lends itself to application subject to availability of secondary data. One major thrust of the theoretical discussion revolves around the heuristic notion “an ounce of prevention is worth a pound of
References
[1]
M. Fredriksson-Ahomaa, A. Stolle, and H. Korkeala, “Molecular epidemiology of Yersinia enterocolitica infections,” FEMS Immunology and Medical Microbiology, vol. 47, no. 3, pp. 315–329, 2006.
[2]
E. Palonen, M. Lindstr?m, and H. Korkeala, “Adaptation of enteropathogenic Yersinia to low growth temperature,” Critical Reviews in Microbiology, vol. 36, no. 1, pp. 54–67, 2010.
[3]
G. Kapperud and G. Langeland, “Enterotoxin production at refrigeration temperature byYersinia enterocolitica and Yersinia enterocolitica-like bacteria,” Current Microbiology, vol. 5, no. 2, pp. 119–122, 1981.
[4]
A. Backhans, C. Fellstr?m, and S. T. Lambertz, “Occurrence of pathogenic Yersinia enterocolitica and Yersinia pseudotuberculosis in small wild rodents,” Epidemiology and Infection, pp. 1–9, 2010.
[5]
S. Wacheck, M. Fredriksson-Ahomaa, M. K?nig, A. Stolle, and R. Stephan, “Wild boars as an important reservoir for foodborne pathogens,” Foodborne Pathogens and Disease, vol. 7, no. 3, pp. 307–312, 2010.
[6]
E. J. Bottone, “Yersinia enterocolitica: Overview and epidemiologic correlates,” Microbes and Infection, vol. 1, no. 4, pp. 323–333, 1999.
[7]
X. Wang, Y. Li, H. Jing et al., “Complete genome sequence of a Yersinia enterocolitica “old world” (3/O:9) strain and comparison with the “new world” (1B/O:8) strain,” Journal of Clinical Microbiology, vol. 49, no. 4, pp. 1251–1259, 2011.
[8]
B. M. Rosner, K. Stark, and D. Werber, “Epidemiology of reported Yersinia enterocolitica infections in Germany, 2001–2008,” BMC Public Health, vol. 10, article 337, 2010.
[9]
M. Eppinger, P. L. Worsham, M. P. Nikolich et al., “Genome sequence of the deep-rooted Yersinia pestis strain angola reveals new insights into the evolution and pangenome of the plague bacterium,” Journal of Bacteriology, vol. 192, no. 6, pp. 1685–1699, 2010.
[10]
S. Ayyadurai, C. Flaudrops, D. Raoult, and M. Drancourt, “Rapid identification and typing of Yersinia pestis and other Yersinia species by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry,” BMC Microbiology, vol. 10, article 285, 2010.
[11]
A. Napiórkowska and M. Sadkowska-Todys, “Yersiniosis in Poland in 2008,” Przeglad Epidemiologiczny, vol. 64, no. 2, pp. 213–216, 2010.
[12]
O. L. Henao, E. Scallan, B. Mahon, and R. M. Hoekstra, “Methods for monitoring trends in the incidence of foodborne diseases: foodborne diseases active surveillance network 1996–2008,” Foodborne Pathogens and Disease, vol. 7, no. 11, pp. 1421–1426, 2010.
[13]
M Dickie, “Defensive behavior and damage cost methods,” in A Primer on Nonmarket Valuation, P. A. Champ, K. J. Boyle, and T. C. Brown, Eds., Kluwer Academic Publisher, Boston, Mass, USA, 2003.
[14]
R. D. Rowe and L. G. Chestnut, “Oxidants and asthma in Los Angeles: a benefit analysis,” EPA Report 230–07–85–010, Environmental Protection Agency, Washington, DC, USA, Office of Policy, 1985.
[15]
I. Ehrlich and S. B. Gary, “Market insurance, self-insurance, and self-protection,” Journal of Political Economy, vol. 80, no. 4, pp. 623–648, 1972.
[16]
L. G. Chestnut and S. Colome, “Heart disease patients’ averting behavior, costs of illness, and willingness to pay to avoid angina episodes,” EPA Report 230–10–88–042, Environmental Protection Agency, Washington, DC, USA, Office of Policy Analysis, 1988.
[17]
L. G. Chestnut, L. R. Keller, W. E. Lambert, and R. D. Rowe, “Measuring heart patients' willingness to pay for changes in angina symptoms,” Medical Decision Making, vol. 16, no. 1, pp. 65–77, 1996.
[18]
M. Dickie and S. Gerking, “Valuing reduced morbidity: a household production approach,” Southern Economic Journal, vol. 57, pp. 690–702, 1991.
[19]
A. Alberini and A. Krupnick, “Cost-of-illness and willingness-to-pay estimates of the benefits of improved air quality: Evidence from Taiwan,” Land Economics, vol. 76, no. 1, pp. 37–53, 2000.
[20]
S. Guh, C. Xingbao, C. Poulos et al., “Comparison of cost-of-illness with willingness-to-pay estimates to avoid shigellosis: Evidence from China,” Health Policy and Planning, vol. 23, no. 2, pp. 125–136, 2008.