全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Interaction of silver nanoparticles with Tacaribe virus

DOI: 10.1186/1477-3155-8-19

Full-Text   Cite this paper   Add to My Lib

Abstract:

This research focuses on evaluating the interaction of silver nanoparticles with a New World arenavirus, Tacaribe virus, to determine if they influence viral replication. Surprisingly exposing the virus to silver nanoparticles prior to infection actually facilitated virus uptake into the host cells, but the silver-treated virus had a significant reduction in viral RNA production and progeny virus release, which indicates that silver nanoparticles are capable of inhibiting arenavirus infection in vitro. The inhibition of viral replication must occur during early replication since although pre-infection treatment with silver nanoparticles is very effective, the post-infection addition of silver nanoparticles is only effective if administered within the first 2-4 hours of virus replication.Silver nanoparticles are capable of inhibiting a prototype arenavirus at non-toxic concentrations and effectively inhibit arenavirus replication when administered prior to viral infection or early after initial virus exposure. This suggests that the mode of action of viral neutralization by silver nanoparticles occurs during the early phases of viral replication.The family Arenaviridae is composed of 18 different species of viruses divided into two antigenic groups, the Old World and New World (Tacaribe complex) groups. The Tacaribe complex, in addition to Tacaribe virus (TCRV), includes the viral hemorrhagic fever-inducing viruses Junin, Machupo, Guanarito, and Sabia. Close antigenic relationships are observed between TCRV, a non-human pathogen, and the category A arenaviruses [1]. TCRV is a biochemically and serologically close relative of Junin and Guanarito viruses but has a low pathogenic potential for humans and is more easily amenable to laboratory study [2]. Arenaviruses are highly fatal and currently have no available vaccines and there is little research to support efficacy of antivirals [3].Current technology offers the possibility of generating new types of nanostructured

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133