|
Determination of the volume-specific surface area by using transmission electron tomography for characterization and definition of nanomaterialsAbstract: The general morphology of gold and silica NM was visualized in 3D by conventional TEM in bright field mode. In orthoslices of the examined NM the surface features of a NM could be seen and measured without interference of higher or lower lying structures inherent to conventional TEM. Segmentation by isosurface rendering allowed visualizing the 3D information of an electron tomographic reconstruction in greater detail than digital slicing. From the 3D reconstructions, the surface area and the volume of the examined NM could be estimated directly and the volume-specific surface area (VSSA) was calculated. The mean VSSA of all examined NM was significantly larger than the threshold of 60 m2/cm3.The high correlation between the measured values of area and volume gold nanoparticles with a known spherical morphology and the areas and volumes calculated from the equivalent circle diameter (ECD) of projected nanoparticles (NP) indicates that the values measured from electron tomographic reconstructions are valid for these gold particles.The characterization and definition of the examined gold and silica NM can benefit from application of conventional bright field electron tomography: the NM can be visualized in 3D, while surface features and the VSSA can be measured.The number based size distribution of a material and the features of its surface are predominant criteria to classify it as a NM [1,2]. TEM remains an important technique to measure the size and surface topography of materials at the nanometer level. Because the resulting micrographs are two-dimensional projections of the studied objects, their interpretation can be difficult, particularly when the particles are complex, agglomerated or lack symmetry. In such cases, fine ultrastructural details are blurred due to superposition of projected features. In addition, parameters like the surface area and volume of NM are not accessible by conventional TEM, while the approach to measure the thickness of NM along the pr
|