|
Personalized neuromusculoskeletal modeling to improve treatment of mobility impairments: a perspective from European research sitesKeywords: Musculoskeletal model, Neural control model, Orthopedic surgery, Neurorehabilitation, Biomechanics Abstract: Mobility involves walking, stair climbing, posture, balance, manipulation, transfers, and other locomotion tasks and is therefore central to qualify of life. When an individual incurs a mobility impairment, quality of life is diminished in proportion to the extent of the impairment. For example, mild knee osteoarthritis can limit participation in desired recreational or athletic activities without significantly affecting normal daily activities and productivity. In contrast, a stroke can make it nearly impossible to walk or manipulate objects, significantly diminishing an individual's ability to be self sufficient and function in society. Spinal cord injury can leave a person with normal upper extremity function but no remaining lower extremity function, significantly impacting only certain aspects of mobility.Treatments for different mobility impairments are typically stereotypical, with a standard menu of treatment options existing for any particular mobility impairment. For example, severe medial compartment knee osteoarthritis may be treated surgically using high tibial osteotomy, unicondylar knee replacement, or total knee replacement. Once a patient seeks surgical treatment for debilitating pain and significant loss of function, the clinician must choose between these treatment options based on clinical assessment of the patient. Furthermore, the clinician must determine the optimal values of the parameters associated with the selected treatment (e.g., method, level, and amount of correction for tibial osteotomy, and implant type, size, and positioning for joint replacement). A similar situation exists for rehabilitation and surgical treatments of neurological disorders such as stroke, Parkinson's disease, and cerebral palsy. In clinical practice, the final treatment plan is usually selected based on subjective clinical experience rather than on objective prediction of post-treatment function developed from patient data.Personalized computational models of the
|