全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Nanopores: maltoporin channel as a sensor for maltodextrin and lambda-phage

DOI: 10.1186/1477-3155-3-3

Keywords: Single molecule detection, Nanobiotechnology, Electrophysiology, Nanopore concept, porin

Full-Text   Cite this paper   Add to My Lib

Abstract:

We could demonstrate the asymmetry of the bacterial phage Lambda binding to its natural receptor maltoporin.We suggest that this type of measurement can be used as a new type of biosensors.Nature created and optimized proteins for specific tasks which makes them often interesting in material science. For example, membrane transporters could control the permeability of artificial nanometer sized container. A typical application could be to control the enzymatic activity in a liposome [1]. Another possible application is to reconstitute channels into planar lipid bilayer and use time dependent conductance as a signal [2,3]. Application of an external electric field drives the ions through the nano (and subnano) meter sized channel. Any larger molecule that diffuses into and temporarily sticks to the channel interior will cause typical fluctuations of the ion current which allow to conclude on its mode of translocation. Such studies were used to follow sugar translocation through maltoporin [4]. Similar types of measurements were done to investigate the translocation of antibiotics like ampicillin [5]. Subtle changes in the channel size or small conformational changes can be recorded and this technique could be developed towards an instrument to probe very soft forces.Porins are attractive candidates for applications because they are very stable. Moreover, recombinant technology permits production of porins in E. coli with high yields [6]. A third advantage is the availability of the high resolution 3-D crystal structure showing details of substrate binding sites which facilitates enormously a rational engineering of modified proteins.The outer cell wall of Gram-negative bacteria from E. coli is fairly permeable to smaller solutes below a molecular weight of about 400 Da [6]. Such substances can freely permeate under a concentration gradient through general diffusion porins in the outer cell wall. Under stress, e.g. in case of lack of nutrition, the pure diffusion proc

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133