|
The permeability of SPION over an artificial three-layer membrane is enhanced by external magnetic fieldAbstract: The RWM model is a 3 cell-layer model with epithelial cells cultured on both sides of a small intestinal submucosal (SIS) matrix and fibroblasts seeded in between. Dextran encapsulated nanoparticle clusters 130 nm in diameter were pulled through the RWM model using permanent magnets with flux density 0.410 Tesla at the pole face. The SIS membranes were harvested at day 7 and then fixed in 4% paraformaldehyde. Transmission electron microscopy and fluorescence spectrophotometry were used to verify transepithelial transport of the SPION across the cell-culture model. Histological sections were examined for evidence of SPION toxicity, as well to generate a timeline of the position of the SPION at different times. SPION also were added to cells in culture to assess in vitro toxicity.Transepithelial electrical resistance measurements confirmed epithelial confluence, as SPION crossed a membrane consisting of three co-cultured layers of cells, under the influence of a magnetic field. Micrographs showed SPION distributed throughout the membrane model, in between cell layers, and sometimes on the surface of cells. TEM verified that the SPION were pulled through the membrane into the culture well below. Fluorescence spectrophotometry quantified the number of SPION that went through the SIS membrane. SPION showed no toxicity to cells in culture.A three-cell layer model of the human round window membrane has been constructed. SPION have been magnetically transported through this model, allowing quantitative evaluation of prospective targeted drug or gene delivery through the RWM. Putative in vivo carrier superparamagnetic nanoparticles may be evaluated using this model.Biocompatible magnetic micro and nanoparticles are being extensively studied by researchers worldwide for possible magnetically enhanced targeted delivery of therapeutics [1]. In these systems, therapeutics (e.g. drugs or genes) are attached to the magnetic particles and injected near the target site. A magnetic f
|