全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Direct microcontact printing of oligonucleotides for biochip applications

DOI: 10.1186/1477-3155-3-7

Keywords: microcontact printing, elastomeric stamp, DNA immobilisation, biochips, detection of mutations

Full-Text   Cite this paper   Add to My Lib

Abstract:

Contrary to a previous work, we showed that the stamps tailored with an elastomeric poly(dimethylsiloxane) material did not require any surface modification to be able to adsorb oligonucleotides or PCR products. The adsorbed DNA molecules are subsequently printed efficiently on a target surface with high sub-micron resolution. Secondly, we showed that successive stamping is characterized by an exponential decay of the amount of transferred DNA molecules to the surface up the 4th print, then followed by a second regime of transfer that was dependent on the contact time and which resulted in reduced quality of the features. Thus, while consecutive stamping was possible, this procedure turned out to be less reproducible and more time consuming than simply re-inking the stamps between each print. Thirdly, we showed that the hybridization signals on arrays made by microcontact printing were 5 to 10-times higher than those made by conventional spotting methods. Finally, we demonstrated the validity of this microcontact printing method in manufacturing oligonucleotides arrays for mutations recognition in a yeast gene.The microcontact printing can be considered as a new potential technology platform to pattern DNA microarrays that may have significant advantages over the conventional spotting technologies as it is easy to implement, it uses low cost material to make the stamp, and the arrays made by this technology are 10-times more sensitive in term of hybridization signals than those manufactured by conventional spotting technology.DNA microarrays have rapidly evolved to become one of the essential tools to investigate expression or mutation of thousands of genes simultaneously. Two main technology platforms for manufacturing DNA chips have emerged. The first platform uses the immobilization of prefabricated DNA or oligonucleotides by spotting on functionalized glass slides using metal pins as originally developed by Brown and collaborators (see http://cmgm.stanford.edu/p

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133