全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Role of Heme and Reactive Oxygen Species in Proliferation and Survival of Trypanosoma cruzi

DOI: 10.1155/2011/174614

Full-Text   Cite this paper   Add to My Lib

Abstract:

Trypanosoma cruzi, the protozoan responsible for Chagas disease, has a complex life cycle comprehending two distinct hosts and a series of morphological and functional transformations. Hemoglobin degradation inside the insect vector releases high amounts of heme, and this molecule is known to exert a number of physiological functions. Moreover, the absence of its complete biosynthetic pathway in T. cruzi indicates heme as an essential molecule for this trypanosomatid survival. Within the hosts, T. cruzi has to cope with sudden environmental changes especially in the redox status and heme is able to increase the basal production of reactive oxygen species (ROS) which can be also produced as byproducts of the parasite aerobic metabolism. In this regard, ROS sensing is likely to be an important mechanism for the adaptation and interaction of these organisms with their hosts. In this paper we discuss the main features of heme and ROS susceptibility in T. cruzi biology. 1. Trypanosoma cruzi and Its Biological Cycle Trypanosoma cruzi comprises a complex group of parasite populations circulating among humans, vectors, reservoirs, and wild and domestic animals [1]. This parasite is the causative agent of Chagas disease or American trypanosomiasis [2] and is transmitted through triatomine vectors, which are blood-sucking insects, when they feed on the vertebrate host. After an insect feeds on the blood of an infected vertebrate, the development cycle of the parasite begins in the intestinal tract of triatomines. In the anterior midgut, most blood trypomastigotes transform into epimastigotes a few hours after ingestion. Some epimastigotes multiply by longitudinal binary fission, and in the insect rectum, a new differentiation occurs (metacyclogenesis process) in which epimastigotes are transformed into metacyclic trypomastigotes. These metacyclic trypomastigotes (highly infectious) are shed in feces and reach the bloodstream of a new vertebrate host after this host scratches an insect bite. The organisms penetrate the mucosa where there are many macrophages; after intense multiplication in the host cell in the form of amastigotes, they transform into trypomastigotes again, returning to the vertebrate circulation and completing the cycle [3]. These series of morphological and biochemical transformations in the life cycle may occur in response to external stimuli [4]. Recently, reactive oxygen species (ROS) and heme have been hypothesized to be important signaling molecules. In this way, protozoan parasites, which are specifically located in places where these

References

[1]  E. S. Garcia, N. A. Ratcliffe, M. M. Whitten, M. S. Gonzalez, and P. Azambuja, “Exploring the role of insect host factors in the dynamics of Trypanosoma cruzi-Rhodnius prolixus interactions,” Journal of Insect Physiology, vol. 53, no. 1, pp. 11–21, 2007.
[2]  C. Chagas, “Nova tripanomíase humana. Estudos sobre a morfologia e o ciclo evolutivo do Schizotrypanum cruzi, n. gen., agente etiológico de nova entidade mórbida do homem,” Memórias do Instituto Oswaldo Cruz, vol. 1, pp. 159–218, 1909.
[3]  A. Rassi, A. Rassi, and J. A. Marin-Neto, “Chagas disease,” The Lancet, vol. 375, no. 9723, pp. 1388–1402, 2010.
[4]  D. J. Steenkamp, “Trypanosomal antioxidants and emerging aspects of redox regulation in the trypanosomatids,” Antioxidants and Redox Signaling, vol. 4, no. 1, pp. 105–121, 2002.
[5]  A. V. Gra?a-Souza, C. Maya-Monteiro, G. O. Paiva-Silva et al., “Adaptations against heme toxicity in blood-feeding arthropods,” Insect Biochemistry and Molecular Biology, vol. 36, no. 4, pp. 322–335, 2006.
[6]  P. Ponka, “Cell biology of heme,” The American Journal of the Medical Sciences, vol. 318, no. 4, pp. 241–256, 1999.
[7]  Y. Zhu and R. B. Silverman, “Revisiting heme mechanisms. A perspective on the mechanisms of nitric oxide synthase (NOS), heme oxygenase (HO), and cytochrome P450s (CYP450s),” Biochemistry, vol. 47, no. 8, pp. 2231–2243, 2008.
[8]  S. W. Ryter and R. M. Tyrrell, “The heme synthesis and degradation pathways: role in oxidant sensitivityHeme oxygenase has both pro- and antioxidant properties,” Free Radical Biology and Medicine, vol. 28, no. 2, pp. 289–309, 2000.
[9]  L. J. Deterding, D. C. Ramirez, J. R. Dubin, R. P. Mason, and K. B. Tomer, “Identification of free radicals on hemoglobin from its self-peroxidation using mass spectrometry and immuno-spin trapping: observation of a histidinyl radical,” The Journal of Biological Chemistry, vol. 279, no. 12, pp. 11600–11607, 2004.
[10]  R. N. Hasan and A. I. Schafer, “Hemin upregulates Egr-1 expression in vascular smooth muscle cells via reactive oxygen species ERK-1/2-Elk-1 and NF-κB,” Circulation Research, vol. 102, no. 1, pp. 42–50, 2008.
[11]  T. H. Schmitt, W. A. Frezzatti, and S. Schreier, “Hemin-induced lipid membrane disorder and increased permeability: a molecular model for the mechanism of cell lysis,” Archives of Biochemistry and Biophysics, vol. 307, no. 1, pp. 96–103, 1993.
[12]  J. Campos-Salinas, M. Cabello-Donayre, R. García-Hernández et al., “A new ATP-binding cassette protein is involved in intracellular haem trafficking in Leishmania,” Molecular Microbiology, vol. 79, no. 6, pp. 1430–1444, 2011.
[13]  K. E. J. Tripodi, S. M. Menendez Bravo, and J. A. Cricco, “Role of heme and heme-proteins trypanosomatid essential metabolic pathways,” Enzyme Research, vol. 2011, Article ID 873230, 12 pages, 2011.
[14]  M. E. Lombardo, L. S. Araujo, and A. Batlle, “5-Aminolevulinic acid synthesis in epimastigotes of Trypanosoma cruzi,” International Journal of Biochemistry and Cell Biology, vol. 35, no. 8, pp. 1263–1271, 2003.
[15]  N. M. El-Sayed, P. J. Myler, D. C. Bartholomeu et al., “The genome sequence of Trypanosoma cruzi, etiologic agent of chagas disease,” Science, vol. 309, no. 5733, pp. 409–435, 2005.
[16]  W. de Souza, T. U. De Carvalho, M. Benchimol, and E. Chiari, “Trypanosoma cruzi: ultrastructural, cytochemical and freeze-fracture studies of protein uptake,” Experimental Parasitology, vol. 45, no. 1, pp. 101–115, 1978.
[17]  I. Porto-Carreiro, M. Attias, K. Miranda, W. de Souza, and N. Cunha-E-Silva, “Trypanosoma cruzi epimastigote endocytic pathway: cargo enters the cytostome and passes through an early endosomal network before storage in reservosomes,” European Journal of Cell Biology, vol. 79, no. 11, pp. 858–869, 2000.
[18]  F. A. Lara, C. Sant'Anna, D. Lemos et al., “Heme requirement and intracellular trafficking in Trypanosoma cruzi epimastigotes,” Biochemical and Biophysical Research Communications, vol. 355, no. 1, pp. 16–22, 2007.
[19]  L. Ko?eny, J. Luke?, and M. Oborník, “Evolution of the haem synthetic pathway in kinetoplastid flagellates: an essential pathway that is not essential after all?” International Journal for Parasitology, vol. 40, no. 2, pp. 149–156, 2010.
[20]  W. de Souza, “Basic cell biology of Trypanosoma cruzi,” Current Pharmaceutical Design, vol. 8, no. 4, pp. 269–285, 2002.
[21]  A. T. Malaquias and M. M. Oliveira, “Phospholipid signalling pathways in Trypanosoma cruzi growth control,” Acta Tropica, vol. 73, no. 2, pp. 93–108, 1999.
[22]  M. Parsons and L. Ruben, “Pathways involved in environmental sensing in trypanosomatids,” Parasitology Today, vol. 16, no. 2, pp. 56–62, 2000.
[23]  E. B. Gómez, M. I. Santori, S. Laría et al., “Characterization of the Trypanosoma cruzi Cdc2p-related protein kinase 1 and identification of three novel associating cyclins,” Molecular and Biochemical Parasitology, vol. 113, no. 1, pp. 97–108, 2001.
[24]  C. M. Ochatt, R. M. Ulloa, H. N. Torres, and M. T. Tellez-Inon, “Characterization of the catalytic subunit of Trypanosoma cruzi cyclic AMP-dependent protein kinase,” Molecular and Biochemical Parasitology, vol. 57, no. 1, pp. 73–81, 1993.
[25]  A. C. Schoijet, K. Miranda, W. Girard-Dias et al., “A Trypanosoma cruzi phosphatidylinositol 3-kinase (TcVps34) is involved in osmoregulation and receptor-mediated endocytosis,” The Journal of Biological Chemistry, vol. 283, no. 46, pp. 31541–31550, 2008.
[26]  M. L. Gómez, C. M. Ochatt, M. G. Kazanietz, H. N. Torres, and M. T. Téllez-I?ón, “Biochemical and immunological studies of protein kinase C from Trypanosoma cruzi,” International Journal for Parasitology, vol. 29, no. 7, pp. 981–989, 1999.
[27]  S. B. Ogueta, G. C. Macintosh, and M. T. Téllez-I?on, “Stage-specific substrate phosphorylation by a Ca2+/calmodulin-dependent protein kinase in Trypanosoma cruzi,” Journal of Eukaryotic Microbiology, vol. 45, no. 4, pp. 392–396, 1998.
[28]  H. Huang, C. Werner, L. M. Weiss, M. Wittner, and G. A. Orr, “Molecular cloning and expression of the catalytic subunit of protein kinase A from Trypanosoma cruzi,” International Journal for Parasitology, vol. 32, no. 9, pp. 1107–1115, 2002.
[29]  H. Huang, L. M. Weiss, F. Nagajyothi et al., “Molecular cloning and characterization of the protein kinase A regulatory subunit of Trypanosoma cruzi,” Molecular and Biochemical Parasitology, vol. 149, no. 2, pp. 242–245, 2006.
[30]  M. Parsons, E. A. Worthey, P. N. Ward, and J. C. Mottram, “Comparative analysis of the kinomes of three pathogenic trypanosomatids: Leishmania major, Trypanosoma brucei and Trypanosoma cruzi,” BMC Genomics, vol. 6, article 127, 2005.
[31]  C. Naula and T. Seebeck, “Cyclic AMP signaling in trypanosomatids,” Parasitology Today, vol. 16, no. 1, pp. 35–38, 2000.
[32]  C. F. Souza, A. B. Carneiro, A. B. Silveira et al., “Heme-induced Trypanosoma cruzi proliferation is mediated by CaM kinase II,” Biochemical and Biophysical Research Communications, vol. 390, no. 3, pp. 541–546, 2009.
[33]  E. E. Almeida-Amaral, V. C. Cardoso, F. G. Francioli, and J. R. Meyer-Fernandes, “Leishmania amazonensis: heme stimulates (Na++K+)ATPase activity via phosphatidylinositol-specific phospholipase C/protein kinase C-like (PI-PLC/PKC) signaling pathways,” Experimental Parasitology, vol. 124, no. 4, pp. 436–441, 2010.
[34]  M. S. Leite, R. Thomaz, J. H. M. Oliveira, P. L. Oliveira, and J. R. Meyer-Fernandes, “Trypanosoma brucei brucei: effects of ferrous iron and heme on ecto-nucleoside triphosphate diphosphohydrolase activity,” Experimental Parasitology, vol. 121, no. 2, pp. 137–143, 2009.
[35]  J. K. Finzi, C. W. M. Chiavegatto, K. F. Corat et al., “Trypanosoma cruzi response to the oxidative stress generated by hydrogen peroxide,” Molecular and Biochemical Parasitology, vol. 133, no. 1, pp. 37–43, 2004.
[36]  J. F. Turrens, “Oxidative stress and antioxidant defenses: a target for the treatment of diseases caused by parasitic protozoa,” Molecular Aspects of Medicine, vol. 25, no. 1-2, pp. 211–220, 2004.
[37]  M. N. Alvarez, G. Peluffo, L. Piacenza, and R. Radi, “Intraphagosomal peroxynitrite as a macrophage-derived cytotoxin against internalized Trypanosoma cruzi: consequences for oxidative killing and role of microbial peroxiredoxins in infectivity,” The Journal of Biological Chemistry, vol. 286, no. 8, pp. 6627–6640, 2011.
[38]  A. J. Kowaltowski, N. C. de Souza-Pinto, R. F. Castilho, and A. E. Vercesi, “Mitochondria and reactive oxygen species,” Free Radical Biology and Medicine, vol. 47, no. 4, pp. 333–343, 2009.
[39]  W. de Souza, M. Attias, and J. C. F. Rodrigues, “Particularities of mitochondrial structure in parasitic protists (Apicomplexa and Kinetoplastida),” International Journal of Biochemistry and Cell Biology, vol. 41, no. 10, pp. 2069–2080, 2009.
[40]  A. E. Vercesi, C. F. Bernardes, M. E. Hoffmann, F. R. Gadelha, and R. Docampo, “Digitonin permeabilization does not affect mitochondrial function and allows the determination of the mitochondrial membrane potential of Trypanosoma cruzi in situ,” The Journal of Biological Chemistry, vol. 266, no. 22, pp. 14431–14434, 1991.
[41]  F. Irigoín, L. Cibils, M. A. Comini, S. R. Wilkinson, L. Flohé, and R. Radi, “Insights into the redox biology of Trypanosoma cruzi: trypanothione metabolism and oxidant detoxification,” Free Radical Biology and Medicine, vol. 45, no. 6, pp. 733–742, 2008.
[42]  L. Piacenza, M. P. Zago, G. Peluffo, M. N. Alvarez, M. A. Basombrio, and R. Radi, “Enzymes of the antioxidant network as novel determiners of Trypanosoma cruzi virulence,” International Journal for Parasitology, vol. 39, no. 13, pp. 1455–1464, 2009.
[43]  B. Zingales, S. G. Andrade, M. R. S. Briones et al., “A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI,” Memorias do Instituto Oswaldo Cruz, vol. 104, no. 7, pp. 1051–1054, 2009.
[44]  A. A. Mielniczki-Pereira, C. M. Chiavegatto, J. A. López, W. Colli, M. J. M. Alves, and F. R. Gadelha, “Trypanosoma cruzi strains, Tulahuen 2 and Y, besides the difference in resistance to oxidative stress, display differential glucose-6-phosphate and 6-phosphogluconate dehydrogenases activities,” Acta Tropica, vol. 101, no. 1, pp. 54–60, 2007.
[45]  D. Villarreal, C. Barnabé, D. Sereno, and M. Tibayrenc, “Lack of correlation between in vitro susceptibility to Benznidazole and phylogenetic diversity of Trypanosoma cruzi, the agent of Chagas disease,” Experimental Parasitology, vol. 108, no. 1-2, pp. 24–31, 2004.
[46]  K. P. Luna, I. P. Hernández, C. M. Rueda, M. M. Zorro, S. L. Croft, and P. Escobar, “In vitro susceptibility of Trypanosoma cruzi strains from Santander, Colombia, to hexadecylphosphocholine (miltefosine), nifurtimox and benznidazole,” Biomedica, vol. 29, no. 3, pp. 448–455, 2009.
[47]  P. C. Campos, V. G. Silva, C. Furtado et al., “Trypanosoma cruzi MSH2: functional analyses on different parasite strains provide evidences for a role on the oxidative stress response,” Molecular and Biochemical Parasitology, vol. 176, no. 1, pp. 8–16, 2010.
[48]  C. R. Machado, L. Augusto-Pinto, R. McCulloch, and S. M. R. Teixeira, “DNA metabolism and genetic diversity in Trypanosomes,” Mutation Research, vol. 612, no. 1, pp. 40–57, 2006.
[49]  S. M. Hernandez, R. A. Kolliker-Frers, M. S. Sanchez et al., “Antiproliferative effect of sera from chagasic patients on Trypanosoma cruzi epimastigotes. Involvement of xanthine oxidase,” Acta Tropica, vol. 109, no. 3, pp. 219–225, 2009.
[50]  L. Piacenza, F. Irigoín, M. N. Alvarez et al., “Mitochondrial superoxide radicals mediate programmed cell death in Trypanosoma cruzi: cytoprotective action of mitochondrial iron superoxide dismutase overexpression,” Biochemical Journal, vol. 403, no. 2, pp. 323–334, 2007.
[51]  F. Irigoín, N. M. Inada, M. P. Fernandes et al., “Mitochondrial calcium overload triggers complement-dependent superoxide-mediated programmed cell death in Trypanosoma cruzi,” Biochemical Journal, vol. 418, no. 3, pp. 595–604, 2009.
[52]  S. R. Wilkinson, D. J. Meyer, and J. M. Kelly, “Biochemical characterization of a trypanosome enzyme with glutathione-dependent peroxidase activity,” Biochemical Journal, vol. 352, no. 3, pp. 755–761, 2000.
[53]  M. Bergeron and M. Olivier, “Trypanosoma cruzi-mediated IFN-γ-inducible nitric oxide output in macrophages is regulated by iNOS mRNA stability,” The Journal of Immunology, vol. 177, no. 9, pp. 6271–6280, 2006.
[54]  M. N. Alvarez, L. Piacenza, F. Irigoín, G. Peluffo, and R. Radi, “Macrophage-derived peroxynitrite diffusion and toxicity to Trypanosoma cruzi,” Archives of Biochemistry and Biophysics, vol. 432, no. 2, pp. 222–232, 2004.
[55]  Y. Tanaka, H. Tanowitz, and B. R. Bloom, “Growth of Trypanosoma cruzi in a cloned macrophage cell line and in a variant defective in oxygen metabolism,” Infection and Immunity, vol. 41, no. 3, pp. 1322–1331, 1983.
[56]  M. Igoillo-Esteve and J. J. Cazzulo, “The glucose-6-phosphate dehydrogenase from Trypanosoma cruzi: its role in the defense of the parasite against oxidative stress,” Molecular and Biochemical Parasitology, vol. 149, no. 2, pp. 170–181, 2006.
[57]  L. Piacenza, G. Peluffo, M. N. Alvarez, J. M. Kelly, S. R. Wilkinson, and R. Radi, “Peroxiredoxins play a major role in protecting Trypanosoma cruzi against macrophage- and endogenously-derived peroxynitrite,” Biochemical Journal, vol. 410, no. 2, pp. 359–368, 2008.
[58]  A. Parodi-Talice, V. Monteiro-Goes, N. Arrambide et al., “Proteomic analysis of metacyclic trypomastigotes undergoing Trypanosoma cruzi metacyclogenesis,” Journal of Mass Spectrometry, vol. 42, no. 11, pp. 1422–1432, 2007.
[59]  L. Piacenza, M. N. Alvarez, G. Peluffo, and R. Radi, “Fighting the oxidative assault: the Trypanosoma cruzi journey to infection,” Current Opinion in Microbiology, vol. 12, no. 4, pp. 415–421, 2009.
[60]  N. Acestor, S. Masina, A. Ives, J. Walker, N. G. Saravia, and N. Fasel, “Resistance to oxidative stress is associated with metastasis in mucocutaneous leishmaniasis,” Journal of Infectious Diseases, vol. 194, no. 8, pp. 1160–1167, 2006.
[61]  M. P. Cupello, C. F. de Souza, C. Buchensky et al., “The heme uptake process in Trypanosoma cruzi epimastigotes is inhibited by heme analogues and by inhibitors of ABC transporters,” Acta Tropica. In press.
[62]  M. R. Miranda, G. E. Canepa, L. A. Bouvier, and C. A. Pereira, “Trypanosoma cruzi: oxidative stress induces arginine kinase expression,” Experimental Parasitology, vol. 114, no. 4, pp. 341–344, 2006.
[63]  Y. Repetto, E. Opazo, J. D. Maya, M. Agosin, and A. Morello, “Glutathione and trypanothione in several strains of Trypanosoma cruzi: effect of drugs,” Comparative Biochemistry and Physiology, vol. 115, no. 2, pp. 281–285, 1996.
[64]  J. D. Maya, Y. Repetto, M. Agosín et al., “Effects of Nifurtimox and benznidazole upon glutathione and trypanothione content in epimastigote, trypomastigote and amastigote forms of Trypanosoma cruzi,” Molecular and Biochemical Parasitology, vol. 86, no. 1, pp. 101–106, 1997.
[65]  C. Moncada, Y. Repetto, J. Aldunate, M. E. Letelier, and A. Morello, “Role of glutathione in the susceptibility of Trypanosoma cruzi to drugs,” Comparative Biochemistry and Physiology, vol. 94, no. 1, pp. 87–91, 1989.
[66]  M. Boiani, L. Piacenza, P. Hernández et al., “Mode of action of Nifurtimox and N-oxide-containing heterocycles against Trypanosoma cruzi: is oxidative stress involved?” Biochemical Pharmacology, vol. 79, no. 12, pp. 1736–1745, 2010.
[67]  M. C. Jockers-Scherubl, R. H. Schirmer, and R. L. Krauth-Siegel, “Trypanothione reductase from Trypanosoma cruzi. Catalytic properties of the enzyme and inhibition studies with trypanocidal compounds,” European Journal of Biochemistry, vol. 180, no. 2, pp. 267–272, 1989.
[68]  G. B. Henderson, P. Ulrich, A. H. Fairlamb et al., “‘Subversive’ substrates for the enzyme trypanothione disulfide reductase: alternative approach to chemotherapy of Chagas disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 15, pp. 5374–5378, 1988.
[69]  F. B. Nogueira, J. C. Ruiz, C. Robello, A. J. Romanha, and S. M. F. Murta, “Molecular characterization of cytosolic and mitochondrial tryparedoxin peroxidase in Trypanosoma cruzi populations susceptible and resistant to benznidazole,” Parasitology Research, vol. 104, no. 4, pp. 835–844, 2009.
[70]  H. M. Andrade, S. M. F. Murta, A. Chapeaurouge, J. Perales, P. Nirdé, and A. J. Romanha, “Proteomic analysis of Trypanosoma cruzi resistance to benznidazole,” Journal of Proteome Research, vol. 7, no. 6, pp. 2357–2367, 2008.
[71]  S. M. F. Murta, F. B. Nogueira, P. F. dos Santos et al., “Differential gene expression in Trypanosoma cruzi populations susceptible and resistant to benznidazole,” Acta Tropica, vol. 107, no. 1, pp. 59–65, 2008.
[72]  S. R. Prathalingham, S. R. Wilkinson, D. Horn, and J. M. Kelly, “Deletion of the Trypanosoma brucei superoxide dismutase gene sodb1 increases sensitivity to nifurtimox and benznidazole,” Antimicrobial Agents and Chemotherapy, vol. 51, no. 2, pp. 755–758, 2007.
[73]  A. V. Pinto and S. L. De Castro, “The trypanocidal activity of naphthoquinones: a review,” Molecules, vol. 14, no. 11, pp. 4570–4590, 2009.
[74]  M. Dubin, S. H. Fernandez-Villamil, A. O. Stoppani, et al., “Cytotoxicity of beta-lapachone, an naphthoquinone with possible therapeutic use,” Medicina, vol. 61, no. 3, pp. 343–350, 2001.
[75]  R. F. S. Menna-Barreto, R. L. S. Goncalves, E. M. Costa et al., “The effects on Trypanosoma cruzi of novel synthetic naphthoquinones are mediated by mitochondrial dysfunction,” Free Radical Biology and Medicine, vol. 47, no. 5, pp. 644–653, 2009.
[76]  S. C. Bourguignon, H. C. Castro, D. O. Santos et al., “Trypanosoma cruzi: in vitro activity of Epoxy-α-Lap, a derivative of α-lapachone, on trypomastigote and amastigote forms,” Experimental Parasitology, vol. 122, no. 2, pp. 91–96, 2009.
[77]  M. J. De Ornelas Toledo, M. T. Bahia, C. M. Carneiro et al., “Chemotherapy with benznidazole and itraconazole for mice infected with different Trypanosoma cruzi clonal genotypes,” Antimicrobial Agents and Chemotherapy, vol. 47, no. 1, pp. 223–230, 2003.
[78]  D. Cosentino-Gomes, T. Russo-Abrah?o, A. L. Fonseca-de-Souza, C. R. Ferreira, A. Galina, and J. R. Meyer-Fernandes, “Modulation of Trypanosoma rangeli ecto-phosphatase activity by hydrogen peroxide,” Free Radical Biology and Medicine, vol. 47, no. 2, pp. 152–158, 2009.
[79]  M. A. Miller, S. E. McGowan, K. R. Gantt et al., “Inducible resistance to oxidant stress in the protozoan Leishmania chagasi,” The Journal of Biological Chemistry, vol. 275, no. 43, pp. 33883–33889, 2000.
[80]  J. H. Zarley, B. E. Britigan, and M. E. Wilson, “Hydrogen peroxide-mediated toxicity for Leishmania donovani chagasi promastigotes: role of hydroxyl radical and protection by heat shock,” The Journal of Clinical Investigation, vol. 88, no. 5, pp. 1511–1521, 1991.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133