The effects of snail density on Biomphalaria alexandrina parasitized with Schistosoma mansoni were investigated. Laboratory experiments were used to quantify the impact of high density on snail growth, fecundity, and survival. Density-dependent birth rates of snails were determined to inform mathematical models, which, until now, have assumed a linear relationship between density and fecundity. The experiments show that the rate of egg-laying followed a negative exponential distribution with increasing density and this was significantly affected by exposure to parasitic infection. High density also affected the weight of snails and survival to a greater degree than exposure to parasitic infection. Although snail growth rates were initially constrained by high density, they retained the potential for growth suggesting a reversible density-dependent mechanism. These experimental data can be used to parameterise models and confirm that snail populations are regulated by nonlinear density-dependent mechanisms. 1. Introduction The density of conspecific individuals in the environment is a critical ecological factor that can affect the growth, survivorship, and fecundity of individuals and the consequent dynamics of populations [1–3]. Such factors become important for controlling host-parasite systems where the presence and magnitude of population regulatory factors are crucial for disease dynamics and the design of effective long-term control strategies [4]. In particular, control efforts may be negated if there is strong density dependence acting within the host-parasite system [4]. Schistosomiasis is a parasitic disease caused by digenetic trematodes, belonging to the Schistosomatidae family. It is currently endemic in 74 developing countries, infecting an estimated 200 million people [5, 6]. Schistosomiasis caused by Schistosoma mansoni is a major public health problem and repeated exposure can lead to liver damage and anaemia, particularly in children [6]. It is primarily found in rural areas in tropical and subtropical countries and infects humans and other vertebrates, using freshwater snails of the genera Biomphalaria as intermediate hosts. Transmission relies upon natural water polluted with human excreta, often found in areas of poverty or low income, where a lack of facilities forces people to use natural water bodies for domestic, recreational, occupational, or religious purposes. One proposed method of controlling schistosomiasis is to treat water bodies with a molluscicide to reduce the number of snail intermediate hosts, thereby breaking the
References
[1]
J. D. Thomas and M. Benjamin, “The effects of population density on growth and reproduction of Biomphalaria glabrata (Say) (Gastropoda: Pulmonata),” Journal of Animal Ecology, vol. 43, pp. 31–50, 1974.
[2]
K. M. Brown, K. R. Carman, and V. Inchausty, “Density-dependent influences on feeding and metabolism in a freshwater snail,” Oecologia, vol. 99, no. 1-2, pp. 158–165, 1994.
[3]
R. Lande, S. Engen, and B.-E. Saether, “Estimating density dependence in time-series of age-structured populations,” Philosophical Transactions of the Royal Society B, vol. 357, no. 1425, pp. 1179–1184, 2002.
[4]
Z. Feng, C.-C. Li, and F. A. Milner, “Schistosomiasis models with density dependence and age of infection in snail dynamics,” Mathematical Biosciences, vol. 177-178, pp. 271–286, 2002.
[5]
B. J. Vennervald and D. W. Dunne, “Morbidity in schistosomiasis: an update,” Current Opinion in Infectious Diseases, vol. 17, no. 5, pp. 439–447, 2004.
[6]
C. G. N. Mascie-Taylor and E. Karim, “The burden of chronic disease,” Science, vol. 302, no. 5652, pp. 1921–1922, 2003.
[7]
G. J. Greer, P.-B. Tchounwou, I. Takougang, and A. Monkiedje, “Field tests of a village-based mollusciciding programme for the control of snail hosts of human schistosomes in Cameroon,” Tropical Medicine and International Health, vol. 1, no. 3, pp. 320–327, 1996.
[8]
F. S. McCullough, P. Gayral, J. Duncan, and J. D. Christie, “Molluscicides in schistosomiasis control,” Bulletin of the World Health Organization, vol. 58, no. 5, pp. 681–689, 1980.
[9]
R. F. Sturrock, “Field studies on the population dynamics of Biomphalaria glabrata, intermediate host of Schistosoma mansoni on the West Indian island of St. Lucia,” International Journal for Parasitology, vol. 3, no. 2, pp. 165–174, 1973.
[10]
C. A. Wright, “The crowding phenomenon in laboratory colonies of freshwater snails,” Annals of Tropical Medicine and Parasitology, vol. 54, pp. 224–232, 1960.
[11]
P. M. Z. Coelho, Y. P. Figueiredo, J. Pellegrino, and G. R. Melo, “Biomphalaria glabrata: the crowding effect related to aquarium water components,” Journal of Parasitology, vol. 63, no. 2, article 284, 1977.
[12]
P. M. Coelho, G. Gazzinelli, J. Pelègrino, and L. H. Pereira, “Aspects of the crowding effect in Biomphalaria glabrata (Say, 1818) evaluated by 59Fe uptake,” Revista do Instituto de Medicina Tropical de Sao Paulo, vol. 17, no. 3, pp. 129–134, 1975.
[13]
E. Chernin and E. H. Michelson, “Studies on the biological control of schistosome-bearing snails. III. The effects of population density on growth and fecundity in Australorbis glabratus,” American Journal of Hygiene, vol. 65, no. 1, pp. 57–70, 1957.
[14]
J. A. Thornhill, J. T. Jones, and J. R. Kusel, “Increased oviposition and growth in immature Biomphalaria glabrata after exposure to Schistosoma mansoni,” Parasitology, vol. 93, no. 3, pp. 443–450, 1986.
[15]
L. A. Cooper, I. C. S. Richards, F. A. Lewis, and D. J. Minchella, “Schistosoma mansoni: relationship between low fecundity and reduced susceptibility to parasite infection in the snail biomphalaria glabrata,” Experimental Parasitology, vol. 79, no. 1, pp. 21–28, 1994.
[16]
A. E. Crews and T. P. Yoshino, “Schistosoma mansoni: effect of infection on reproduction and gonadal growth in Biomphalaria glabrata,” Experimental Parasitology, vol. 68, no. 3, pp. 326–334, 1989.
[17]
B. M. Sturrock, “The influence of infection with Schistosoma mansoni on the growth rate and reproduction of Biomphalaria pfeifferi,” Annals of Tropical Medicine and Parasitology, vol. 60, no. 2, pp. 187–197, 1966.
[18]
R. M. Anderson, “The regulation of host population growth by parasitic species,” Parasitology, vol. 76, no. 2, pp. 119–157, 1978.
[19]
M. E. J. Woolhouse, “On the application of mathematical-models of schistosome transmission dynamics. 1. Natural transmission,” Acta Tropica, vol. 49, no. 4, pp. 241–270, 1991.
[20]
L. Blair and J. P. Webster, “Dose-dependent schistosome-induced mortality and morbidity risk elevates host reproductive effort,” Journal of Evolutionary Biology, vol. 20, no. 1, pp. 54–61, 2007.
[21]
F. A. Lewis, M. A. Stirewalt, C. P. Souza, and G. Gazzinelli, “Large-scale laboratory maintenance of Schistosoma mansoni, with observations on three schistosome/snail host combinations,” Journal of Parasitology, vol. 72, no. 6, pp. 813–829, 1986.
[22]
M. J. Crawley, The R Book, John Wiley & Sons, Silwood Park, UK, 2007.
[23]
E. A. Meuleman, “Host-parasite inter-relationships between the freshwater pulmonate Biomphalaria pfeifferi and the trematode Schistosoma mansoni,” Nertherlands Journal of Zoology, vol. 22, pp. 355–427, 1972.
[24]
F. J. Etges and W. Gresso, “Effect of Schistosoma mansoni infection upon fecundity in Australorbis glabratus,” Journal of Parasitology, vol. 51, no. 5, p. 757, 1965.
[25]
D. L. Looker and F. J. Etges, “Effect of Schistosoma mansoni infection on fecundity and perivitelline fluid composition in Biomphalaria glabrata,” Journal of Parasitology, vol. 65, no. 6, pp. 880–885, 1979.
[26]
J. D. Thomas, M. Benjamin, A. Lough, and R. H. Aram, “The effects of calcium in the external environment on the growth and natality rates of Biomphalaria glabrata (Say),” Journal of Animal Ecology, vol. 43, pp. 839–860, 1974.
[27]
R. M. Sibly, D. Barker, M. C. Denham, J. Hone, and M. Pagel, “On the regulation of populations of mammals, birds, fish, and insects,” Science, vol. 309, no. 5734, pp. 607–610, 2005.