全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Sequential Model of Host Cell Killing and Phagocytosis by Entamoeba histolytica

DOI: 10.1155/2011/926706

Full-Text   Cite this paper   Add to My Lib

Abstract:

The protozoan parasite Entamoeba histolytica is responsible for invasive intestinal and extraintestinal amebiasis. The virulence of Entamoeba histolytica is strongly correlated with the parasite's capacity to effectively kill and phagocytose host cells. The process by which host cells are killed and phagocytosed follows a sequential model of adherence, cell killing, initiation of phagocytosis, and engulfment. This paper presents recent advances in the cytolytic and phagocytic processes of Entamoeba histolytica in context of the sequential model. 1. Introduction Entamoeba histolytica is an enteric parasite that colonizes the human intestinal lumen and has the capacity to invade the epithelium. Although 90% of amebic infections are asymptomatic and self-limiting, there are an estimated 50 million cases of invasive infection annually [1, 2]. According to the WHO, Entamoeba histolytica is ranked third as a cause of death among parasites with 100,000 estimated deaths annually [1]. The morbidity and mortality of this parasite is primarily seen in developing countries. Ingestion of contaminated food or water containing infectious cysts leads to excystation in the intestine. Each cyst produces eight motile trophozoites, which colonize the host’s colon. In those cases where the infection is not self limiting, amebic dysentery and liver abscess formation can occur [2]. The process of invasion and hepatic abscess formation has no apparent advantage for Entamoeba histolytica [3]. The logical question would then be why did this organism evolve to be a pathogen and not a commensal like its noninvasive cousin, Entamoeba dispar? One theory of Entamoeba histolytica’s origin of virulence is coincidental evolution. Host cells may have recognition patterns similar to those of enteric bacteria that the parasite has evolved to identify. Entamoeba histolytica has been shown to preferentially phagocytose cells coated with collectins, C-type lectins involved in recognition of ligands that are common to both bacteria and apoptotic cells [4]. An effective hijacking of the host’s own innate immune system to increase phagocytosis may have led to an invasive phenotype. In further support of this theory, Ghosh and Samuelson [3] have shown that several signaling proteins required for Entamoeba histolytica’s virulence are also utilized to kill and phagocytose bacteria. Another seemingly plausible explanation is that Entamoeba histolytica’s invasive phenotype arose in response to host defense mechanisms [5]. Directed apoptosis and subsequent phagocytosis may serve to limit host

References

[1]  “WHO/PAHO/UNESCO report. A consultation with experts on amoebiasis. Mexico City, Mexico 28-29 January, 1997,” Epidemiological Bulletin, vol. 18, no. 1, pp. 13–14, 1997.
[2]  R. Haque, C. D. Huston, M. Hughes, E. Houpt, and W. A. Petri Jr., “Amebiasis,” New England Journal of Medicine, vol. 348, no. 16, pp. 1565–1573, 2003.
[3]  S. K. Ghosh and J. Samuelson, “Involvement of p21(racA), phosphoinositide 3-kinase, and vacuolar ATPase in phagocytosis of bacteria and erythrocytes by Entamoeba histolytica: suggestive evidence for coincidental evolution of amebic invasiveness,” Infection and Immunity, vol. 65, no. 10, pp. 4243–4249, 1997.
[4]  J. E. Teixeira, B. T. Heron, and C. D. Huston, “C1q- and collectin-dependent phagocytosis of apoptotic host cells by the intestinal protozoan Entamoeba histolytica,” Journal of Infectious Diseases, vol. 198, no. 7, pp. 1062–1070, 2008.
[5]  R. Campos-Rodríguezp and A. Jarillo-Luna, “The pathogenicity of Entamoeba histolytica is related to the capacity of evading innate immunity,” Parasite Immunology, vol. 27, no. 1-2, pp. 1–8, 2005.
[6]  S. M. Becker, K. N. Cho, X. Guo et al., “Epithelial cell apoptosis facilitates Entamoeba histolytica infection in the gut,” American Journal of Pathology, vol. 176, no. 3, pp. 1316–1322, 2010.
[7]  S. L. Reed, J. A. Ember, D. S. Herdman, R. G. DiScipio, T. E. Hugli, and I. Gigli, “The extracellular neutral cysteine proteinase of Entamoeba histolytica degrades anaphylatoxins C3a and C5a,” Journal of Immunology, vol. 155, no. 1, pp. 266–274, 1995.
[8]  B. L. Kelsall and J. I. Ravdin, “Degradation of human IgA by Entamoeba histolytica,” Journal of Infectious Diseases, vol. 168, no. 5, pp. 1319–1322, 1993.
[9]  V. Q. Tran, D. S. Herdman, B. E. Torian, and S. L. Reed, “The neutral cysteine proteinase of Entamoeba histolytica degrades IgG and prevents its binding,” Journal of Infectious Diseases, vol. 177, no. 2, pp. 508–511, 1998.
[10]  A. Martinez-Palomo, A. Gonzalez-Robles, and B. Chavez, “Structural bases of the cytolytic mechanisms of Entamoeba histolytica,” Journal of Protozoology, vol. 32, no. 1, pp. 166–175, 1985.
[11]  E. Orozco, G. Guarneros, A. martinez Palomo, and T. Sanchez, “Entamoeba histolytica. Phagocytosis as a virulence factor,” Journal of Experimental Medicine, vol. 158, no. 5, pp. 1511–1521, 1983.
[12]  M. A. Rodriguez and E. Orozco, “Isolation and characterization of phagocytosis- and virulence-deficient mutants of Entamoeba histolytica,” Journal of Infectious Diseases, vol. 154, no. 1, pp. 27–32, 1986.
[13]  D. R. Boettner, C. D. Huston, J. A. Sullivan, and W. A. Petri Jr., “Entamoeba histolytica and Entamoeba dispar utilize externalized phosphatidylserine for recognition and phagocytosis of erythrocytes,” Infection and Immunity, vol. 73, no. 6, pp. 3422–3430, 2005.
[14]  J. I. Ravdin and R. L. Guerrant, “Role of adherence in cytopathogenic mechanisms of Entamoeba histolytica. Study with mammalian tissue culture cells and human erythrocytes,” Journal of Clinical Investigation, vol. 68, no. 5, pp. 1305–1313, 1981.
[15]  W. A. Petri Jr., M. D. Chapman, T. Snodgrass, B. J. Mann, J. Broman, and J. I. Ravdin, “Subunit structure of the galactose and N-acetyl-D-galactosamine-inhibitable adherence lectin in Entamoeba histolytica,” Journal of Biological Chemistry, vol. 264, no. 5, pp. 3007–3012, 1989.
[16]  X. J. Cheng, M. A. Hughes, C. D. Huston et al., “Intermediate subunit of the Gal/GalNAc lectin of Entamoeba histolytica is a member of a gene family containing multiple CXXC sequence motifs,” Infection and Immunity, vol. 69, no. 9, pp. 5892–5898, 2001.
[17]  J. M. Dodson, P. W. Lenkowski, A. C. Eubanks et al., “Infection and immunity mediated by the carbohydrate recognition domain of the Entamoeba histolytica Gal/GalNAc lectin,” Journal of Infectious Diseases, vol. 179, no. 2, pp. 460–466, 1999.
[18]  K. Chadee, M. L. Johnson, E. Orozco, W. A. Petri, and J. I. Ravdin, “Binding and internalization of rat colonic mucins by the galactose/N-acetyl-D-galactosamine adherence lectin of Entamoeba histolytica,” Journal of Infectious Diseases, vol. 158, no. 2, pp. 398–406, 1988.
[19]  K. Chadee, W. A. Petri, D. J. Innes, and J. I. Ravdin, “Rat and human colonic mucins bind to and inhibit adherence lectin of Entamoeba histolytica,” Journal of Clinical Investigation, vol. 80, no. 5, pp. 1245–1254, 1987.
[20]  B. J. Mann, C. Y. Chung, J. M. Dodson, L. S. Ashley, L. L. Braga, and T. L. Snodgrass, “Neutralizing monoclonal antibody epitopes of the Entamoeba histolytica galactose adhesin map to the cysteine-rich extracellular domain of the 170- kilodalton subunit,” Infection and Immunity, vol. 61, no. 5, pp. 1772–1778, 1993.
[21]  W. A. Petri Jr., R. Haque, and B. J. Mann, “The bittersweet interface of parasite and host: lectin-carbohydrate interactions during human invasion by the parasite Entamoeba histolytica,” Annual Review of Microbiology, vol. 56, pp. 39–64, 2002.
[22]  D. Kobiler and D. Mirelman, “Adhesion of Entamoeba histolytica trophozoites to monolayers of human cells,” Journal of Infectious Diseases, vol. 144, no. 6, pp. 539–546, 1981.
[23]  J. I. Ravdin, C. F. Murphy, R. A. Salata, R. L. Guerrant, and E. L. Hewlett, “N-acetyl-d-galactosamine-inhibitable adherence lectin of Entamoeba histolytica. I. Partial purification and relation to amoebic virulence in vitro,” Journal of Infectious Diseases, vol. 151, no. 5, pp. 804–815, 1985.
[24]  R. R. Vines, G. Ramakrishnan, J. B. Rogers, L. A. Lockhart, B. J. Mann, and W. A. Petri Jr., “Regulation of adherence and virulence by the Entamoeba histolytica lectin cytoplasmic domain, which contains a β2 integrin motif,” Molecular Biology of the Cell, vol. 9, no. 8, pp. 2069–2079, 1998.
[25]  G. García-Rivera, M. A. Rodríguez, R. Ocádiz et al., “Entamoeba histolytica: a novel cysteine protease and an adhesin form the 112 kDa surface protein,” Molecular Microbiology, vol. 33, no. 3, pp. 556–568, 1999.
[26]  C. Ba?uelos, G. García-Rivera, I. López-Reyes, and E. Orozco, “Functional characterization of EhADH112: an Entamoeba histolytica Bro1 domain-containing protein,” Experimental Parasitology, vol. 110, no. 3, pp. 292–297, 2005.
[27]  L. S. Diamond, “Axenic cultivation of Entamoeba histolytica,” Science, vol. 134, no. 3475, pp. 336–337, 1961.
[28]  B. Loftus, I. Anderson, R. Davies et al., “The genome of the protist parasite Entamoeba histolytica,” Nature, vol. 433, no. 7028, pp. 865–868, 2005.
[29]  L. A. Baxt and U. Singh, “New insights into Entamoeba histolytica pathogenesis,” Current Opinion in Infectious Diseases, vol. 21, no. 5, pp. 489–494, 2008.
[30]  R. C. MacFarlane and U. Singh, “Identification of an Entamoeba histolytica serine-, threonine-, and isoleucine-rich protein with roles in adhesion and cytotoxicity,” Eukaryotic Cell, vol. 6, no. 11, pp. 2139–2146, 2007.
[31]  L. A. Baxt, E. Rastew, R. Bracha, D. Mirelman, and U. Singh, “Downregulation of an Entamoeba histolytica rhomboid protease reveals roles in regulating parasite adhesion and phagocytosis,” Eukaryotic Cell, vol. 9, no. 8, pp. 1283–1293, 2010.
[32]  E. Bier, L. Y. Jan, and Y. N. Jan, “rhomboid, a gene required for dorsoventral axis establishment and peripheral nervous system development in Drosophila melanogaster,” Genes and Development, vol. 4, no. 2, pp. 190–203, 1990.
[33]  S. Urban and M. Freeman, “Substrate specificity of rhomboid intramembrane proteases is governed by helix-breaking residues in the substrate transmembrane domain,” Molecular Cell, vol. 11, no. 6, pp. 1425–1434, 2003.
[34]  B. T. Heron, A. Sateriale, J. E. Teixeira, and C. D. Huston, “Evidence for a novel Entamoeba histolytica lectin activity that recognises carbohydrates present on ovalbumin,” International Journal for Parasitology. In press.
[35]  D. L. Beck, D. R. Boettner, B. Dragulev, K. Ready, T. Nozaki, and W. A. Petri Jr., “Identification and gene expression analysis of a large family of transmembrane kinases related to the Gal/GalNAc lectin in Entamoeba histolytica,” Eukaryotic Cell, vol. 4, no. 4, pp. 722–732, 2005.
[36]  S. Shrimal, S. Bhattacharya, and A. Bhattacharya, “Serum-dependent selective expression of EhTMKB1-9, a member of Entamoeba histolytica B1 family of transmembrane kinases,” PLoS Pathogens, vol. 6, no. 6, Article ID e1000929, 2010.
[37]  S. Moody, S. Becker, Y. Nuchamowitz, M. J. McConville, and D. Mirelman, “The lipophosphoglycan-like molecules of virulent and avirulent E. histolytica as well as of E. dispar differ in both composition and abundance,” Archives of Medical Research, vol. 28, pp. 98–102, 1997.
[38]  S. Moody-Haupt, J. H. Patterson, D. Mirelman, and M. J. McConville, “The major surface antigens of Entamoeba histolytica trophozoites are GPI-anchored proteophosphoglycans,” Journal of Molecular Biology, vol. 297, no. 2, pp. 409–420, 2000.
[39]  A. Bhattacharya, R. Prasad, and D. L. Sacks, “Identification and partial characterization of a lipophosphoglycan from a pathogenic strain of Entamoeba histolytica,” Molecular and Biochemical Parasitology, vol. 56, no. 1, pp. 161–168, 1992.
[40]  G. Srivastava, M. T. Anand, S. Bhattacharya, and A. Bhattacharya, “Lipophosphoglycan is present in distinctly different form in different Entamoeba histolytica strains and absent in Entamoeba moshkovskii and Entamoeba invadens,” Journal of eukaryotic microbiology, vol. 42, no. 5, pp. 617–622, 1995.
[41]  S. Moody, S. Becker, Y. Nuchamowitz, and D. Mirelman, “Virulent and avirulent Entamoeba histolytica and E. dispar differ in their cell surface phosphorylated glycolipids,” Parasitology, vol. 114, no. 2, pp. 95–104, 1997.
[42]  S. Moody, S. Becker, Y. Nuchamowitz, and D. Mirelman, “Identification of significant variation in the composition of lipophosphoglycan-like molecules of E. histolytica and E. dispar,” Journal of Eukaryotic Microbiology, vol. 45, no. 2, pp. 9S–12S, 1998.
[43]  H. Lotter, T. Jacobs, I. Gaworski, and E. Tannich, “Sexual dimorphism in the control of amebic liver abscess in a mouse model of disease,” Infection and Immunity, vol. 74, no. 1, pp. 118–124, 2006.
[44]  H. Lotter, N. González-Roldán, B. Lindner et al., “Natural killer T cells activated by a lipopeptidophosphoglycan from Entamoeba histolytica are critically important to control amebic liver abscess,” PLoS Pathogens, vol. 5, no. 5, Article ID e1000434, 2009.
[45]  A. Marinets, T. Zhang, N. Guillén et al., “Protection against invasive amebiasis by a single monoclonal antibody directed against a lipophosphoglycan antigen localized on the surface of Entamoeba histolytica,” Journal of Experimental Medicine, vol. 186, no. 9, pp. 1557–1565, 1997.
[46]  Z. Zhang, M. Duchêne, and S. L. Stanley Jr., “A monoclonal antibody to the amebic lipophosphoglycan-proteophosphoglycan antigens can prevent disease in human intestinal xenografts infected with Entamoeba histolytica,” Infection and Immunity, vol. 70, no. 10, pp. 5873–5876, 2002.
[47]  S. L. Stanley Jr., H. Huizenga, and E. Li, “Isolation and partial characterization of a surface glycoconjugate of Entamoeba histolytica,” Molecular and Biochemical Parasitology, vol. 50, no. 1, pp. 127–138, 1992.
[48]  M. Seigneur, J. Mounier, M. C. Prevost, and N. Guillén, “A lysine- and glutamic acid-rich protein, KERP1, from Entamoeba histolytica binds to human enterocytes,” Cellular Microbiology, vol. 7, no. 4, pp. 569–579, 2005.
[49]  J. Santi-Rocca, C. Weber, G. Guigon, O. Sismeiro, J. Y. Coppée, and N. Guillén, “The lysine- and glutamic acid-rich protein KERP1 plays a role in Entamoeba histolytica liver abscess pathogenesis,” Cellular Microbiology, vol. 10, no. 1, pp. 202–217, 2008.
[50]  L. D. Saffer and W. A. Petri Jr., “Role of the galactose lectin of Entamoeba histolytica in adherence-dependent killing of mammalian cells,” Infection and Immunity, vol. 59, no. 12, pp. 4681–4683, 1991.
[51]  M. Leippe, S. Ebel, O. L. Schoenberger, R. D. Horstmann, and H. J. Muller-Eberhard, “Pore-forming peptide of pathogenic Entamoeba histolytica,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 17, pp. 7659–7663, 1991.
[52]  M. Leippe, J. Andr?, R. Nickel, E. Tannich, and H. J. Müller-Eberhard, “Amoebapores, a family of membranolytic peptides from cytoplasmic granules of Entamoeba histolytica: isolation, primary structure, and pore formation in bacterial cytoplasmic membranes,” Molecular Microbiology, vol. 14, no. 5, pp. 895–904, 1994.
[53]  M. Leippe, “Ancient weapons: NK-lysin, is a mammalian homolog to pore-forming peptides of a protozoan parasite,” Cell, vol. 83, no. 1, pp. 17–18, 1995.
[54]  R. Bracha, Y. Nuchamowitz, M. Leippe, and D. Mirelman, “Antisense inhibition of amoebapore expression in Entamoeba histolytica causes a decrease in amoebic virulence,” Molecular Microbiology, vol. 34, no. 3, pp. 463–472, 1999.
[55]  R. Bracha, Y. Nuchamowitz, and D. Mirelman, “Transcriptional silencing of an amoebapore gene in Entamoeba histolytica: molecular analysis and effect on pathogenicity,” Eukaryotic Cell, vol. 2, no. 2, pp. 295–305, 2003.
[56]  X. Zhang, Z. Zhang, D. Alexander, R. Bracha, D. Mirelman, and S. L. Stanley Jr., “Expression of amoebapores is required for full expression of Entamoeba histolytica virulence in amebic liver abscess but is not necessary for the induction of inflammation or tissue damage in amebic colitis,” Infection and Immunity, vol. 72, no. 2, pp. 678–683, 2004.
[57]  J. Andr?, O. Berninghausen, and M. Leippe, “Membrane lipid composition protects Entamoeba histolytica from self-destruction by its pore-forming toxins,” FEBS Letters, vol. 564, no. 1-2, pp. 109–115, 2004.
[58]  J. I. Ravdin, C. F. Murphy, R. L. Guerrant, and S. A. Long-Krug, “Effect of antagonists of calcium and phospholipase A on the cytopathogenicity of Entamoeba histolytica,” Journal of Infectious Diseases, vol. 152, no. 3, pp. 542–549, 1985.
[59]  S. B. Aley, W. A. Scott, and Z. A. Cohn, “Plasma membrane of Entamoeba histolytica,” Journal of Experimental Medicine, vol. 152, no. 2, pp. 391–404, 1980.
[60]  G. Simon and G. Rouser, “Species variations in phospholipid class distribution of organs: II. Heart and skeletal muscle,” Lipids, vol. 4, no. 6, pp. 607–614, 1969.
[61]  K. S. Mukhamedova and A. I. Glushenkova, “Natural phosphonolipids,” Chemistry of Natural Compounds, vol. 36, no. 4, pp. 329–341, 2000.
[62]  J. Cerbón and J. Flores, “Phospholipid composition and turnover of pathogenic amebas,” Comparative Biochemistry and Physiology B, vol. 69, no. 3, pp. 487–492, 1981.
[63]  B. D. Ragland, L. S. Ashley, D. L. Vaux, and W. A. Petri Jr., “Entamoeba histolytica: target cells killed by trophozoites undergo DNA fragmentation which is not blocked by Bcl-2,” Experimental Parasitology, vol. 79, no. 3, pp. 460–467, 1994.
[64]  K. B. Seydel and S. L. Stanley Jr., “Entamoeba histolytica induces host cell death in amebic liver abscess by a non-fas-dependent, non-tumor necrosis factor alpha-dependent pathway of apoptosis,” Infection and Immunity, vol. 66, no. 6, pp. 2980–2983, 1998.
[65]  O. Berninghausen and M. Leippe, “Necrosis versus apoptosis as the mechanism of target cell death induced by Entamoeba histolytica,” Infection and Immunity, vol. 65, no. 9, pp. 3615–3621, 1997.
[66]  C. D. Huston, E. R. Houpt, B. J. Mann, C. S. Hahn, and W. A. Petri Jr., “Caspase 3-dependent killing of host cells by the parasite Entamoeba histolytica,” Cellular Microbiology, vol. 2, no. 6, pp. 617–625, 2000.
[67]  C. D. Huston, D. R. Boettner, V. Miller-Sims, and W. A. Petri Jr., “Apoptotic killing and phagocytosis of host cells by the parasite Entamoeba histolytica,” Infection and Immunity, vol. 71, no. 2, pp. 964–972, 2003.
[68]  L. Yan and S. L. Stanley Jr., “Blockade of caspases inhibits amebic liver abscess formation in a mouse model of disease,” Infection and Immunity, vol. 69, no. 12, pp. 7911–7914, 2001.
[69]  K. B. Seydel and S. L. Stanley Jr., “Entamoeba histolytica induces host cell death in amebic liver abscess by a non-fas-dependent, non-tumor necrosis factor alpha-dependent pathway of apoptosis,” Infection and Immunity, vol. 66, no. 6, pp. 2980–2983, 1998.
[70]  S. Sim, T. S. Yong, S. J. Park et al., “NADPH oxidase-derived reactive oxygen species-mediated activation of ERK1/2 is required for apoptosis of human neutrophils induced by Entamoeba histolytica,” Journal of Immunology, vol. 174, no. 7, pp. 4279–4288, 2005.
[71]  K. A. Kim, Y. A. Lee, and M. H. Shin, “Calpain-dependent calpastatin cleavage regulates caspase-3 activation during apoptosis of Jurkat T cells induced by Entamoeba histolytica,” International Journal for Parasitology, vol. 37, no. 11, pp. 1209–1219, 2007.
[72]  J. I. Ravdin, N. Sperelakis, and R. L. Guerrant, “Effect of ion channel inhibitors on the cytopathogenicity of Entamoeba histolytica,” Journal of Infectious Diseases, vol. 146, no. 3, pp. 335–340, 1982.
[73]  J. E. Teixeira and B. J. Mann, “Entamoeba histolytica-induced dephosphorylation in host cells,” Infection and Immunity, vol. 70, no. 4, pp. 1816–1823, 2002.
[74]  K. A. Kim, Y. A. Lee, and M. H. Shin, “Calpain-dependent cleavage of SHP-1 and SHP-2 is involved in the dephosphorylation of Jurkat T cells induced by Entamoeba histolytica,” Parasite Immunology, vol. 32, no. 3, pp. 176–183, 2010.
[75]  S. Sim, S. J. Park, T. S. Yong, K. I. Im, and M. H. Shin, “Involvement of β-integrin in ROS-mediated neutrophil apoptosis induced by Entamoeba histolytica,” Microbes and Infection, vol. 9, no. 11, pp. 1368–1375, 2007.
[76]  T. N. Mayadas and X. Cullere, “Neutrophil β integrins: moderators of life or death decisions,” Trends in Immunology, vol. 26, no. 7, pp. 388–395, 2005.
[77]  J. Pacheco, M. Shibayama, R. Campos et al., “In vitro and in vivo interaction of Entamoeba histolytica Gal/GalNAc lectin with various target cells: an immunocytochemical analysis,” Parasitology International, vol. 53, no. 1, pp. 35–47, 2004.
[78]  S. N. Buss, S. Hamano, A. Vidrich et al., “Members of the Entamoeba histolytica transmembrane kinase family play non-redundant roles in growth and phagocytosis,” International Journal for Parasitology, vol. 40, no. 7, pp. 833–843, 2010.
[79]  A. Mehra, J. Fredrick, W. A. Petri Jr., S. Bhattacharya, and A. Bhattacharya, “Expression and function of a family of transmembrane kinases from the protozoan parasite Entamoeba histolytica,” Infection and Immunity, vol. 74, no. 9, pp. 5341–5351, 2006.
[80]  D. R. Boettner, C. D. Huston, A. S. Linford et al., “Entamoeba histolytica phagocytosis of human erythrocytes involves PATMK, a member of the transmembrane kinase family,” PLoS Pathogens, vol. 4, no. 1, pp. 122–133, 2008.
[81]  S. J. Martin, C. P. M. Reutelingsperger, A. J. McGahon et al., “Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl,” Journal of Experimental Medicine, vol. 182, no. 5, pp. 1545–1556, 1995.
[82]  V. A. Fadok, D. R. Voelker, P. A. Campbell, J. J. Cohen, D. L. Bratton, and P. M. Henson, “Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages,” Journal of Immunology, vol. 148, no. 7, pp. 2207–2216, 1992.
[83]  D. L. Bratton and P. Henson, “Apoptotic cell recognition: will the real phosphatidylserine receptor(s) please stand up?” Current Biology, vol. 18, no. 2, pp. R76–R79, 2008.
[84]  K. S. Ravichandran, “Find-me and eat-me signals in apoptotic cell clearance: progress and conundrums,” Journal of Experimental Medicine, vol. 207, no. 9, pp. 1807–1817, 2010.
[85]  S. Marion and N. Guillén, “Genomic and proteomic approaches highlight phagocytosis of living and apoptotic human cells by the parasite Entamoeba histolytica,” International Journal for Parasitology, vol. 36, no. 2, pp. 131–139, 2006.
[86]  C. Aurrecoechea, J. Brestelli, B. P. Brunk et al., “EuPathDB: a portal to eukaryotic pathogen databases,” Nucleic Acids Research, vol. 38, database issue, pp. D415–D419, 2010.
[87]  C. G. Clark, U. C. M. Alsmark, M. Tazreiter et al., “Structure and content of the Entamoeba histolytica genome,” Advances in Parasitology, vol. 65, pp. 51–190, 2007.
[88]  I. Bruchhaus, T. Jacobs, M. Leippe, and E. Tannich, “Entamoeba histolytica and Entamoeba dispar: differences in numbers and expression of cysteine proteinase genes,” Molecular Microbiology, vol. 22, no. 2, pp. 255–263, 1996.
[89]  I. Bruchhaus, B. J. Loftus, N. Hall, and E. Tannich, “The intestinal protozoan parasite Entamoeba histolytica contains 20 cysteine protease genes, of which only a small subset is expressed during in vitro cultivation,” Eukaryotic Cell, vol. 2, no. 3, pp. 501–509, 2003.
[90]  C. A. Gilchrist, E. Houpt, N. Trapaidze et al., “Impact of intestinal colonization and invasion on the Entamoeba histolytica transcriptome,” Molecular and Biochemical Parasitology, vol. 147, no. 2, pp. 163–176, 2006.
[91]  S. Ankri, T. Stolarsky, and D. Mirelman, “Antisense inhibition of expression of cysteine proteinases does not affect Entamoeba histolytica cytopathic or haemolytic activity but inhibits phagocytosis,” Molecular Microbiology, vol. 28, no. 4, pp. 777–785, 1998.
[92]  X. Que, S. H. Kim, M. Sajid et al., “A surface amebic cysteine proteinase inactivates interleukin-18,” Infection and Immunity, vol. 71, no. 3, pp. 1274–1280, 2003.
[93]  D. Bansal, P. Ave, S. Kerneis et al., “An ex-vivo human intestinal model to study Entamoeba histolytica pathogenesis,” PLoS Neglected Tropical Diseases, vol. 3, no. 11, article e551, 2009.
[94]  S. G. Meléndez-López, S. Herdman, K. Hirata et al., “Use of recombinant Entamoeba histolytica cysteine proteinase 1 to identify a potent inhibitor of amebic invasion in a human colonic model,” Eukaryotic Cell, vol. 6, no. 7, pp. 1130–1136, 2007.
[95]  C. He, G. P. Nora, E. L. Schneider et al., “A novel Entamoeba histolytica cysteine proteinase, EhCP4, is key for invasive amebiasis and a therapeutic target,” Journal of Biological Chemistry, vol. 285, no. 24, pp. 18516–18527, 2010.
[96]  S. L. Stanley Jr., A. Becker, C. Kunz-Jenkins, L. Foster, and E. Li, “Cloning and expression of a membrane antigen of Entamoeba histolytica possessing multiple tandem repeats,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 13, pp. 4976–4980, 1990.
[97]  J. E. Teixeira and C. D. Huston, “Participation of the serine-rich Entamoeba histolytica protein in amebic phagocytosis of apoptotic host cells,” Infection and Immunity, vol. 76, no. 3, pp. 959–966, 2008.
[98]  J. K. van de Wetering, L. M. G. van Golde, and J. J. Batenburg, “Collectins: players of the innate immune system,” European Journal of Biochemistry, vol. 271, no. 7, pp. 1229–1249, 2004.
[99]  S. Rubio, T. Lacaze-Masmonteil, B. Chailley-Heu, A. Kahn, J. R. Bourbon, and R. Ducroc, “Pulmonary surfactant protein A (SP-A) is expressed by epithelial cells of small and large intestine,” Journal of Biological Chemistry, vol. 270, no. 20, pp. 12162–12169, 1995.
[100]  J. Akiyama, A. Hoffman, C. Brown et al., “Tissue distribution of surfactant proteins A and D in the mouse,” Journal of Histochemistry and Cytochemistry, vol. 50, no. 7, pp. 993–996, 2002.
[101]  K. Uemura, M. Saka, T. Nakagawa et al., “L-MBP is expressed in epithelial cells of mouse small intestine,” Journal of Immunology, vol. 169, no. 12, pp. 6945–6950, 2002.
[102]  C. A. Ogden, A. DeCathelineau, P. R. Hoffmann et al., “C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells,” Journal of Experimental Medicine, vol. 194, no. 6, pp. 781–795, 2001.
[103]  I. Meza, P. Talamás-Rohana, and M. A. Vargas, “The cytoskeleton of Entamoeba histolytica: structure, function, and regulation by signaling pathways,” Archives of Medical Research, vol. 37, no. 2, pp. 234–243, 2006.
[104]  G. B. Bailey, D. B. Day, and J. W. Gasque, “Rapid polymerization of Entamoeba histolytica actin induced by interaction with target cells,” Journal of Experimental Medicine, vol. 162, no. 2, pp. 546–558, 1985.
[105]  R. L. Guerrant, J. Brush, and J. I. Ravdin, “Interaction between Entamoeba histolytica and human polymorphonuclear neutrophils,” Journal of Infectious Diseases, vol. 143, no. 1, pp. 83–93, 1981.
[106]  G. B. Bailey, D. B. Day, C. Nokkaew, and C. C. Harper, “Stimulation by target cell membrane lipid of actin polymerization and phagocytosis by Entamoeba histolytica,” Infection and Immunity, vol. 55, no. 8, pp. 1848–1853, 1987.
[107]  H. Voigt, J. C. Olivo, P. Sansonetti, and N. Guillén, “Myosin IB from Entamoeba histolytica is involved in phagocytosis of human erythrocytes,” Journal of Cell Science, vol. 112, no. 8, pp. 1191–1201, 1999.
[108]  K. Mittal, B. H. Welter, and L. A. Temesvari, “Entamoeba histolytica: lipid rafts are involved in adhesion of trophozoites to host extracellular matrix components,” Experimental Parasitology, vol. 120, no. 2, pp. 127–134, 2008.
[109]  E. Labruyère, C. Zimmer, V. Galy, J. C. Olivo-Marin, and N. Guillén, “EhPAK, a member of the p21-activated kinase family, is involved in the control of Entamoeba histolytica migration and phagocytosis,” Journal of Cell Science, vol. 116, no. 1, pp. 61–71, 2003.
[110]  E. D. J. O. Batista and W. De Souza, “Involvement of protein kinases on the process of erythrophagocytis by Entamoeba histolytica,” Cell Biology International, vol. 28, no. 4, pp. 243–248, 2004.
[111]  M. Okada, C. D. Huston, B. J. Mann, W. A. Petri Jr., K. Kita, and T. Nozaki, “Proteomic analysis of phagocytosis in the enteric protozoan parasite Entamoeba histolytica,” Eukaryotic Cell, vol. 4, no. 4, pp. 827–831, 2005.
[112]  S. Marion, C. Laurent, and N. Guillén, “Signalization and cytoskeleton activity through myosin IB during the early steps of phagocytosis in Entamoeba histolytica: a proteomic approach,” Cellular Microbiology, vol. 7, no. 10, pp. 1504–1518, 2005.
[113]  M. Okada, C. D. Huston, M. Oue et al., “Kinetics and strain variation of phagosome proteins of Entamoeba histolytica by proteomic analysis,” Molecular and Biochemical Parasitology, vol. 145, no. 2, pp. 171–183, 2006.
[114]  M. Okada and T. Nozaki, “New insights into molecular mechanisms of phagocytosis in Entamoeba histolytica by proteomic analysis,” Archives of Medical Research, vol. 37, no. 2, pp. 244–252, 2006.
[115]  S. L. Stanley Jr., “Amoebiasis,” Lancet, vol. 361, no. 9362, pp. 1025–1034, 2003.
[116]  K. B. Seydel, E. Li, P. E. Swanson, and S. L. Stanley Jr., “Human intestinal epithelial cells produce proinflammatory cytokines in response to infection in a SCID mouse-human intestinal xenograft model of amebiasis,” Infection and Immunity, vol. 65, no. 5, pp. 1631–1639, 1997.
[117]  L. Mortimer and K. Chadee, “The immunopathogenesis of Entamoeba histolytica,” Experimental Parasitology, vol. 126, no. 3, pp. 366–380, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133