The interaction and survival of pathogens in hostile environments and in confrontation with host immune responses are important mechanisms for the establishment of infection. Ectophosphatases are enzymes localized at the plasma membrane of cells, and their active sites face the external medium rather than the cytoplasm. Once activated, these enzymes are able to hydrolyze phosphorylated substrates in the extracellular milieu. Several studies demonstrated the presence of surface-located ecto-phosphatases in a vast number of pathogenic organisms, including bacteria, protozoa, and fungi. Little is known about the role of ecto-phosphatases in host-pathogen interactions. The present paper provides an overview of recent findings related to the virulence induced by these surface molecules in protozoa and fungi. 1. Introduction Cells are exposed to diverse environmental stimuli throughout their cycles in all biological systems. Protein phosphorylation and dephosphorylation are central events in cell recognition of external and internal signals, leading to specific responses. While protein kinases transfer a phosphate group from ATP to a protein (i.e., phosphorylate), protein phosphatases catalyze the removal of phosphate groups from specific residues of proteins (i.e., dephosphorylate) [1, 2]. The balance between the antagonistic activities of protein kinases and phosphatases are responsible for many cellular functions, including metabolic pathways, cell-cell communication, proliferation, and gene transcription [3]. The complete genome sequencing of various microorganisms made it possible to assemble the kinome and phosphatome of a few trypanosomatids [4, 5]. These strategies have brought new perspectives of researches in the areas of biochemistry, physiology, and genetics, providing knowledge about the microorganisms’ life cycles, as well as predicting diagnostic biomarkers, novel drug targets and vaccine candidates against parasitic infections. Parasites engage a plethora of surface and secreted molecules in order to attach and enter mammalian cells. Some of these molecules are involved in triggering specific signaling pathways both in the parasite and the host cell, which are critical for parasite entry and survival [6]. Plasma membranes of cells contain enzymes that are oriented with their active sites facing the external medium rather than the cytoplasm, which are important for host-parasite interactions [7, 8]. In the case of an ectoenzyme other criteria can be included as: (1) the enzyme has to act on extracellular substrate, (2) cellular integrity is
References
[1]
C. J. Oliver and S. Shenolikar, “Physiologic importance of protein phosphatase inhibitors,” Frontiers in Bioscience, vol. 3, pp. D961–D972, 1998.
[2]
P. Cohen, “The origins of protein phosphorylation,” Nature Cell Biology, vol. 4, no. 5, pp. E127–E130, 2002.
[3]
T. Hunter, “Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling,” Cell, vol. 80, no. 2, pp. 225–236, 1995.
[4]
M. Parsons, E. A. Worthey, P. N. Ward, and J. C. Mottram, “Comparative analysis of the kinomes of three pathogenic trypanosomatids: Leishmania major, Trypanosoma brucei and Trypanosoma cruzi,” BMC Genomics, vol. 6, pp. 127–145, 2005.
[5]
R. Brenchley, H. Tariq, H. McElhinney et al., “The TriTryp phosphatome: analysis of the protein phosphatase catalytic domains,” BMC Genomics, vol. 8, pp. 434–455, 2007.
[6]
M. J. M. Alves and W. Colli, “Trypanosoma cruzi: adhesion to the host cell and intracellular survival,” IUBMB Life, vol. 59, no. 4-5, pp. 274–279, 2007.
[7]
J. R. Meyer-Fernandes, “Ecto-ATPases in protozoa parasites: looking for a function,” Parasitology International, vol. 51, no. 3, pp. 299–303, 2002.
[8]
J. R. Meyer-Fernandes, D. Cosentino-Gomes, D. P. Vieira, and A. H. Lopes, “Ecto-nucleoside triphosphate diphosphohydrolase activities in trypanosomatids: possible roles in infection, virulence and purine recycling,” The Open Parasitology Journal, vol. 4, pp. 116–119, 2010.
[9]
B. Sz??r, “Trypanosomatid protein phosphatases,” Molecular and Biochemical Parasitology, vol. 173, pp. 53–63, 2010.
[10]
A. V. Andreeva and M. A. Kutuzov, “Protozoan protein tyrosine phosphatases,” International Journal for Parasitology, vol. 38, no. 11, pp. 1279–1295, 2008.
[11]
E. E. D. Almeida-Amaral, R. Belmont-Firpo, M. A. Vannier-Santos, and J. R. Meyer-Fernandes, “Leishmania amazonensis: characterization of an ecto-phosphatase activity,” Experimental Parasitology, vol. 114, no. 4, pp. 334–340, 2006.
[12]
S. A. O. Gomes, A. L. Fonseca-de-Souza, B. A. Silva et al., “Trypanosoma rangeli: differential expression of cell surface polypeptides and ecto-phosphatase activity in short and long epimastigote forms,” Experimental Parasitology, vol. 112, no. 4, pp. 253–262, 2006.
[13]
A. L. Fonseca-de-Souza, C. F. Dick, A. L. A. dos Santos, and J. R. Meyer-Fernandes, “A -dependent ecto-phosphatase activity on the external surface of Trypanosoma rangeli modulated by exogenous inorganic phosphate,” Acta Tropica, vol. 107, no. 2, pp. 153–158, 2008.
[14]
A. L. Fonseca-de-Souza, C. F. Dick, A. L. A. dos Santos, F. V. Fonseca, and J. R. Meyer-Fernandes, “Trypanosoma rangeli: a possible role for ecto-phosphatase activity on cell proliferation,” Experimental Parasitology, vol. 122, no. 3, pp. 242–246, 2009.
[15]
C. F. Dick, A. L. A. dos-Santos, A. L. Fonseca-de-Souza, J. Rocha-Ferreira, and J. R. Meyer-Fernandes, “Trypanosoma rangeli: differential expression of ecto-phosphatase activities in response to inorganic phosphate starvation,” Experimental Parasitology, vol. 124, no. 4, pp. 386–393, 2010.
[16]
A. T. Remaley, D. B. Kuhns, and R. E. Basford, “Leishmanial phosphatase blocks neutrophil O-2 production,” The Journal of Biological Chemistry, vol. 259, no. 18, pp. 11173–11175, 1984.
[17]
D. S. Alviano, L. F. Kneipp, A. H. Lopes et al., “Differentiation of Fonsecaea pedrosoi mycelial forms into sclerotic cells is induced by platelet-activating factor,” Research in Microbiology, vol. 154, no. 10, pp. 689–695, 2003.
[18]
T. Furuya, L. I. Zhong, J. R. Meyer-Fernandes, H. G. Lu, S. N. J. Moreno, and R. Docampo, “Ecto-protein tyrosine phosphatase activity in Trypanosoma cruzi infective stages,” Molecular and Biochemical Parasitology, vol. 92, no. 2, pp. 339–348, 1998.
[19]
T. Kiffer-Moreira, A. A. D. S. Pinheiro, W. S. Alviano et al., “An ectophosphatase activity in Candida parapsilosis influences the interaction of fungi with epithelial cells,” FEMS Yeast Research, vol. 7, no. 4, pp. 621–628, 2007.
[20]
M. B. Portela, L. F. Kneipp, I. P. Ribeiro De Souza et al., “Ectophosphatase activity in Candida albicans influences fungal adhesion: study between HIV-positive and HIV-negative isolates,” Oral Diseases, vol. 16, no. 5, pp. 431–437, 2010.
[21]
E. Touati, E. Dassa, J. Dassa, and P. L. Boquet, “Acid phosphatase (pH2.5) of Escherichia coli: regulatory characteristics,” in Microorganisms, A. Torriani- Gorini, F. G. Rothman, S. Silver, A. Wright, and E. Yagil, Eds., pp. 31–40, ASM Press, Washington, DC, USA, 1987.
[22]
L. F. Kneipp, M. L. Rodrigues, C. Holandino, et al., “Ectophosphatase activity in conidial forms of Fonsecaea pedrosoi is modulated by exogenous phosphate and mediates fungal adhesion to epithelial cells,” Microbiology, vol. 150, pp. 3355–3362, 2004.
[23]
I. Collopy-Junior, F. F. Esteves, L. Nimrichter, M. L. Rodrigues, C. S. Alviano, and J. R. Meyer-Fernandes, “An ectophosphatase activity in Cryptococcus neoformans,” FEMS Yeast Research, vol. 6, no. 7, pp. 1010–1017, 2006.
[24]
A. Martiny, M. A. Vannier-Santos, V. M. Borges et al., “Leishmania-induced tyrosine phosphorylation in the host macrophage and its implication to infection,” European Journal of Cell Biology, vol. 71, no. 2, pp. 206–215, 1996.
[25]
J. M. Jadin and J. Creemers, “The role of excretion of acid phosphatase in Trypanosoma brucei and T. cruzi,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 66, no. 1, pp. 8–9, 1972.
[26]
L. O. Andrade and N. W. Andrews, “Opinion: the Trypanosoma cruzi-host-cell interplay: location, invasion, retention,” Nature Reviews Microbiology, vol. 3, no. 10, pp. 819–823, 2005.
[27]
J. A. Atwood, D. B. Weatherly, T. A. Minning et al., “Microbiology: the Trypanosoma cruzi proteome,” Science, vol. 309, no. 5733, pp. 473–476, 2005.
[28]
J. McLaughlin, “The association of distinct acid phosphatases with the flagella pocket and surface membrane fractions obtained from bloodstream forms of Trypanosoma rhodesiense,” Molecular and Cellular Biochemistry, vol. 70, no. 2, pp. 177–184, 1986.
[29]
O. M. Tosomba, T. H. T. Coetzer, and J. D. Lonsdale-Eccles, “Localisation of acid phosphatase activity on the surface of bloodstream forms of Trypanosoma congolense,” Experimental Parasitology, vol. 84, no. 3, pp. 429–438, 1996.
[30]
E. C. Fernandes, J. R. Meyer-Fernandes, M. A. C. Silva-Neto, and A. E. Vercesi, “Trypanosoma brucei: ecto-phosphatase activity present on the surface of intact procyclic forms,” Zeitschrift fur Naturforschung Section C—Journal of Biosciences, vol. 52, no. 5-6, pp. 351–358, 1997.
[31]
N. Bakalara, X. Santarelli, C. Davis, and T. Baltz, “Purification, cloning, and characterization of an acidic ectoprotein phosphatase differentially expressed in the infectious bloodstream form of Trypanosoma brucei,” The Journal of Biological Chemistry, vol. 275, no. 12, pp. 8863–8871, 2000.
[32]
J. R. Meyer-Fernandes, M. A. Da Silva-Neto, M. Dos Santos Soares, E. Fernandas, A. E. Vercesi, and M. M. de Oliveira, “Ecto-phosphatase activities on the cell surface of the amastigote forms of Trypanosoma cruzi,” Zeitschrift fur Naturforschung—Section C Journal of Biosciences, vol. 54, no. 11, pp. 977–984, 1999.
[33]
D. Cosentino-Gomes, T. Russo-Abrah?o, A. L. Fonseca-de-Souza, C. R. Ferreira, A. Galina, and J. R. Meyer-Fernandes, “Modulation of Trypanosoma rangeli ecto-phosphatase activity by hydrogen peroxide,” Free Radical Biology and Medicine, vol. 47, no. 2, pp. 152–158, 2009.
[34]
N. Bakalara, A. Seyfang, C. Davis, and T. Baltz, “Characterization of a life-cycle-stage-regulated membrane protein tyrosine phosphatase in Trypanosoma brucei,” European Journal of Biochemistry, vol. 234, no. 3, pp. 871–877, 1995.
[35]
P. M. L. Dutra, C. O. Rodrigues, J. B. Jesus, A. H. C. S. Lopes, T. Souto-Padrón, and J. R. Meyer-Fernandes, “A novel ecto-phosphatase activity of herpetomonas muscarum muscarum inhibited by platelet-activating factor,” Biochemical and Biophysical Research Communications, vol. 253, no. 1, pp. 164–169, 1998.
[36]
P. M. L. Dutra, C. O. Rodrigues, A. Romeiro et al., “Characterization of ectophosphatase activities in trypanosomatid parasites of plants,” Phytopathology, vol. 90, no. 9, pp. 1032–1038, 2000.
[37]
P. M. L. Dutra, F. A. Dias, M. A. A. Santos et al., “Secreted phosphatase activities in trypanosomatid parasites of plants modulated by platelet-activating factor,” Phytopathology, vol. 91, no. 4, pp. 408–414, 2001.
[38]
M. M. Aguirre-García, J. Cerbón, and P. Talamás-Rohana, “Purification and properties of an acid phosphatase from Entamoeba histolytica HM-1:IMSS,” International Journal for Parasitology, vol. 30, no. 5, pp. 585–591, 2000.
[39]
J. N. Amazonas, D. Cosentino-Gomes, A. Werneck-Lacerda et al., “Giardia lamblia: characterization of ecto-phosphatase activities,” Experimental Parasitology, vol. 121, no. 1, pp. 15–21, 2009.
[40]
J. De Jesus, T. Podlyska, A. Hampshire, C. Lopes, M. Vannier-Santos, and J. Meyer-Fernandes, “Characterization of an ecto-phosphatase activity in the human parasite Trichomonas vaginalis,” Parasitology Research, vol. 88, no. 11, pp. 991–997, 2002.
[41]
A. M. Shakarian, M. B. Joshi, E. Ghedin, and D. M. Dwyer, “Molecular dissection of the functional domains of a unique, tartrate-resistant, surface membrane acid phosphatase in the primitive human pathogen Leishmania donovani,” The Journal of Biological Chemistry, vol. 277, no. 20, pp. 17994–18001, 2002.
[42]
M. M. Aguirre-García, A. R. Escalona-Monta?o, N. Bakalara, A. Pérez-Torres, L. Gutiérrez-Kobeh, and I. Becker, “Leishmania major: detection of membrane-bound protein tyrosine phosphatase,” Parasitology, vol. 132, no. 5, pp. 641–649, 2006.
[43]
E. C. Fernandes, J. M. Granjeiro, E. M. Taga, J. R. Meyer-Fernandes, and H. Aoyama, “Phosphatase activity characterization on the surface of intact bloodstream forms of Trypanosoma brucei,” FEMS Microbiology Letters, vol. 220, no. 2, pp. 197–206, 2003.
[44]
E. C. Fernandes, J. M. Granjeiro, H. Aoyama, F. V. Fonseca, J. R. Meyer-Fernandes, and A. E. Vercesi, “A metallo phosphatase activity present on the surface of Trypanosoma brucei procyclic forms,” Veterinary Parasitology, vol. 118, no. 1-2, pp. 19–28, 2003.
[45]
B. Menz, G. Winter, T. Ilg, F. Lottspeich, and P. Overath, “Purification and characterization of a membrane-bound acid phosphatase of Leishmania mexicana,” Molecular and Biochemical Parasitology, vol. 47, no. 1, pp. 101–108, 1991.
[46]
M. Wiese, O. Berger, Y. D. Stierhof, M. Wolfram, M. Fuchs, and P. Overath, “Gene cloning and cellular localization of a membrane-bound acid phosphatase of Leishmania mexicana,” Molecular and Biochemical Parasitology, vol. 82, no. 2, pp. 153–165, 1996.
[47]
M. Engstler, F. Weise, K. Bopp et al., “The membrane-bound histidine acid phosphatase TbMBAP1 is essential for endocytosis and membrane recycling in Trypanosoma brucei,” Journal of Cell Science, vol. 118, no. 10, pp. 2105–2118, 2005.
[48]
P. M. L. Dutra, L. C. Couto, A. H. C. S. Lopes, and J. R. Meyer-Fernandes, “Characterization of ecto-phosphatase activities of Trypanosoma cruzi: a comparative study between Colombiana and Y strains,” Acta Tropica, vol. 100, no. 1-2, pp. 88–95, 2006.
[49]
T. C. A. Jorge, H. S. Barbosa, A. L. Moreira, W. De Souza, and M. N. L. Meirelles, “The interaction of myotropic and macrophagotropic strains of Trypanosoma cruzi with myoblasts and fibers of skeletal muscle,” Zeitschrift für Parasitenkunde Parasitology Research, vol. 72, no. 5, pp. 577–584, 1986.
[50]
C. O. Rodrigues, P. M. L. Dutra, F. S. Barros, T. Souto-Padrón, J. R. Meyer-Fernandes, and A. H. C. S. Lopes, “Platelet-activating factor induction of secreted phosphatase activity in Trypanosoma cruzi,” Biochemical and Biophysical Research Communications, vol. 266, no. 1, pp. 36–42, 1999.
[51]
A. Martiny, J. R. Meyer-Fernandes, W. De Souza, and M. A. Vannier-Santos, “Altered tyrosine phosphorylation of ERK1 MAP kinase and other macrophage molecules caused by Leishmania amastigotes,” Molecular and Biochemical Parasitology, vol. 102, no. 1, pp. 1–12, 1999.
[52]
M. A. Vannier-Santos, A. Martiny, J. R. Meyer-Fernandes, and W. De Souza, “Leishmanial protein kinase C modulates host cell infection via secreted acid phosphatase,” European Journal of Cell Biology, vol. 67, no. 2, pp. 112–119, 1995.
[53]
D. Nandan, R. Lo, and N. E. Reiner, “Activation of phosphotyrosine phosphatase activity attenuates mitogen- activated protein kinase signaling and inhibits c-FOS and nitric oxide synthase expression in macrophages infected with Leishmania donovani,” Infection and Immunity, vol. 67, no. 8, pp. 4055–4063, 1999.
[54]
M. A. Gomez, I. Contreras, M. Hallé, M. L. Tremblay, R. W. McMaster, and M. Olivier, “Leishmania GP63 alters host signaling through cleavage-activated protein tyrosine phosphatases,” Science Signaling, vol. 2, no. 90, p. ra58, 2009.
[55]
I. Abu-Dayyeh, K. Hassani, E. R. Westra, J. C. Mottram, and M. Olivier, “Comparative study of the ability of Leishmania mexicana promastigotes and amastigotes to alter macrophage signaling and functions,” Infection and Immunity, vol. 78, no. 6, pp. 2438–2445, 2010.
[56]
D. E. Cool and J. J. Blum, “Protein tyrosine phosphatase activity in Leishmania donovani,” Molecular and Cellular Biochemistry, vol. 127-128, pp. 143–149, 1993.
[57]
M. Nascimento, W. W. Zhang, A. Ghosh et al., “Identification and characterization of a protein-tyrosine phosphatase in Leishmania: involvement in virulence,” The Journal of Biological Chemistry, vol. 281, no. 47, pp. 36257–36268, 2006.
[58]
M. Anaya-Ruiz, J. L. Rosales-Encina, and P. Talamas-Rohana, “Membrane acid phosphatase (MAP) from Entamoeba histolytica,” Archives of Medical Research, vol. 28, pp. 182–183, 1997.
[59]
M. M. Aguirre-García, J. Cerbón, and P. Talamás-Rohana, “Purification and properties of an acid phosphatase from Entamoeba histolytica HM-1:IMSS,” International Journal for Parasitology, vol. 30, no. 5, pp. 585–591, 2000.
[60]
M. M. Aguirre-Garcia, J. L. Rosales-Encina, and P. Talamas-Rohana, “Secreted Entamoeba histolytica acid phosphatase (SAP),” Archives of Medical Research, vol. 28, pp. 184–185, 1997.
[61]
J. Ventura-Juarez, M. M. Aguirre-Garcia, and P. Talamas-Rohana, “Subcellular distribution and in situ localization of the acid phosphatase of Entamoeba histolytica,” Archives of Medical Research, vol. 31, no. 4, pp. S183–S184, 2000.
[62]
A. A. de Sá Pinheiro, J. N. Amazonas, F. de Souza Barros et al., “Entamoeba histolytica: an ecto-phosphatase activity regulated by oxidation-reduction reactions,” Experimental Parasitology, vol. 115, no. 4, pp. 352–358, 2007.
[63]
L. Nimrichter, M. L. Rodrigues, E. G. Rodrigues, and L. R. Travassos, “The multitude of targets for the immune system and drug therapy in the fungal cell wall,” Microbes and Infection, vol. 7, no. 4, pp. 789–798, 2005.
[64]
P. Mildner, B. Ries, and S. Barbaric, “Acid phosphatase and adenosine triphosphatase activities in the cell wall of baker's yeast,” Biochimica et Biophysica Acta, vol. 391, no. 1, pp. 67–74, 1975.
[65]
P. H. Fernanado, G. J. Panagoda, and L. P. Samaranayake, “The relationship between the acid and alkaline phosphatase activity and the adherence of clinical isolates of Candida parapsilosis to human buccal epithelial cells,” APMIS, vol. 107, pp. 1034–1042, 1999.
[66]
W. N. Arnold, L. C. Mann, and K. H. Sakai, “Acid phosphatases of Sporothrix schenckii,” Journal of General Microbiology, vol. 132, no. 12, pp. 3421–3432, 1986.
[67]
M. Bernard, I. Mouyna, G. Dubreucq et al., “Characterization of a cell-wall acid phosphatase (PhoAp) in Aspergillus fumigatus,” Microbiology, vol. 148, no. 9, pp. 2819–2829, 2002.
[68]
L. F. Kneipp, V. F. Palmeira, A. A. S. Pinheiro et al., “Phosphatase activity on the cell wall of Fonsecaea pedrosoi,” Medical Mycology, vol. 41, no. 6, pp. 469–477, 2003.
[69]
T. Kiffer-Moreira, A. A. S. Pinheiro, M. R. Pinto et al., “Mycelial forms of Pseudallescheria boydii present ectophosphatase activities,” Archives of Microbiology, vol. 188, no. 2, pp. 159–166, 2007.
[70]
I. Bose, A. J. Reese, J. J. Ory, G. Janbon, and T. L. Doering, “A yeast under cover: The capsule of Cryptococcus neoformans,” Eukaryotic Cell, vol. 2, no. 4, pp. 655–663, 2003.
[71]
J. K. Klarlund, “Transformation of cells by an inhibitor of phosphatases acting on phosphotyrosine in proteins,” Cell, vol. 41, no. 3, pp. 707–717, 1985.
[72]
C. L. Sodré, B. L. M. Moreira, F. B. Nobrega et al., “Characterization of the intracellular pools involved in the calcium homeostasis in Herpetomonas sp. promastigotes,” Archives of Biochemistry and Biophysics, vol. 380, no. 1, pp. 85–91, 2000.
[73]
E. E. de Almeida-Amaral, C. Caruso-Neves, V. M. P. Pires, and J. R. Meyer-Fernandes, “Leishmania amazonensis: characterization of an ouabain-insensitive -ATPase activity,” Experimental Parasitology, vol. 118, no. 2, pp. 165–171, 2008.
[74]
D. Cosentino-Gomes and J. R. Meyer-Fernandes, “Ecto-phosphatases in protozoan parasites: possible roles in nutrition, growth and ROS sensing,” Journal of Bioenergetics and Biomembranes, vol. 43, no. 1, pp. 89–92, 2011.