|
Gradient estimation in dendritic reinforcement learningKeywords: Dendritic computation, reinforcement learning, spiking neuron Abstract: Except for biologically detailed modeling studies, the overwhelming majority of works in mathematical neuroscience have treated neurons as point neurons, i.e., a linear aggregation of synaptic input followed by a nonlinearity in the generation of somatic action potentials was assumed to characterize a neuron. This disregards the fact that many neurons in the brain have complex dendritic arborization where synaptic inputs may be aggregated in highly nonlinear ways [1]. From an information processing perspective sticking with the minimal point neuron may nevertheless seem justified since networks of such simple neurons already display remarkable computational properties: assuming infinite precision and noiseless arithmetic a suitable network of spiking point neurons can simulate a universal Turing machine and, further, impressive information processing capabilities persist when one makes more realistic assumptions such as taking noise into account (see [2] and the references therein). Such generic observations are underscored by the detailed compartmental modeling of the computation performed in a hippocampal pyramidal cell [3]. There it was found that (in a rate coding framework) the input-output behavior of the complex cell is easily emulated by a simple two layer network of point neurons.If the computations of complex cells are readily emulated by relatively simple circuits of point neurons, the question arises why so many of the neurons in the brain are complex. Of course, the reason for this may be only loosely related to information processing proper, it might be that maintaining a complex cell is metabolically less costly than the maintenance of the equivalent network of point neurons. Here, we wish to explore a different hypothesis, namely that complex cells have crucial advantages with regard to learning. This hypothesis is motivated by the fact that many artificial intelligence algorithms for neural networks assume that synaptic plasticity is modulated by in
|