|
Analysis of a hyperbolic geometric model for visual texture perceptionKeywords: Neural fields, nonlinear integro-differential equations, functional analysis, non-Euclidean analysis, stability analysis, hyperbolic geometry, hypergeometric functions, bumps Abstract: Mathematics Subject Classification: 30F45, 33C05, 34A12, 34D20, 34D23, 34G20, 37M05, 43A85, 44A35, 45G10, 51M10, 92B20, 92C20.The selectivity of the responses of individual neurons to external features is often the basis of neuronal representations of the external world. For example, neurons in the primary visual cortex (V1) respond preferentially to visual stimuli that have a specific orientation [1-3], spatial frequency [4], velocity and direction of motion [5], color [6]. A local network in the primary visual cortex, roughly 1 mm2 of cortical surface, is assumed to consist of subgroups of inhibitory and excitatory neurons each of which is tuned to a particular feature of an external stimulus. These subgroups are the so-called Hubel and Wiesel hypercolumns of V1. We have introduced in [7] a new approach to model the processing of image edges and textures in the hypercolumns of area V1 that is based on a nonlinear representation of the image first order derivatives called the structure tensor [8,9]. We suggested that this structure tensor was represented by neuronal populations in the hypercolumns of V1. We also suggested that the time evolution of this representation was governed by equations similar to those proposed by Wilson and Cowan [10]. The question of whether some populations of neurons in V1 can represent the structure tensor is discussed in [7] but cannot be answered in a definite manner. Nevertheless, we hope that the predictions of the theory we are developing will help deciding on this issue.Our present investigations were motivated by the work of Bressloff, Cowan, Golubitsky, Thomas and Wiener [11,12] on the spontaneous occurence of hallucinatory patterns under the influence of psychotropic drugs, and its extension to the structure tensor model. A further motivation was the following studies of Bressloff and Cowan [4,13,14] where they study a spatial extension of the ring model of orientation of Ben-Yishai [1] and Hansel, Sompolinsky [2]. To achieve
|