全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Self Organizing Map of Artificial Neural Network for Defining Level of Service Criteria of Urban Streets

Keywords: Self Organizing Map (SOM) , Artificial Neural Network (ANN) , Level of Service (LOS) , urban streets , GPS , clustering

Full-Text   Cite this paper   Add to My Lib

Abstract:

In India, Level of Service (LOS) is not well defined for urban streets. The analysis procedure followed in India is that developed by HCM 2000. Speed ranges of LOS categories for various urban Street Classes defined by HCM are appropriate for developed countries having homogenous type of traffic flow. India being a developing country its traffic is very much heterogeneous having vehicles of different operational characteristics. Therefore, LOS criteria in Indian context should be defined correctly considering the traffic and geometric characteristics of urban streets. Defining LOS is basically a classification problem and application of cluster analysis is found to be a suitable technique to solve the problem. Self Organizing Map (SOM) a type of Artificial Neural Network (ANN) used to solve this classification problem. For this study, lot of speed data is required for which GPS is found to be the most suitable method of data collection and hence extensively used. Free flow speed (FFS) and average travel speed during peak and off peak hours inventory of road segments are used in this study. FFS ranges for different urban Street Classes and speed ranges of LOS categories found to be lower than that mentioned in HCM-2000.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133