Radial basis function neural networks (RBFNNs), which is a relatively new class of neural networks, have been investigated for their applicability for prediction of performance and emission characteristics of a diesel engine fuelled with waste cooking oil (WCO). The RBF networks were trained using the experimental data, where in load percentage, compression ratio, blend percentage, injection timing, and injection pressure were taken as the input parameters, and brake thermal efficiency (BTE), brake specific energy consumption (BSEC), exhaust gas temperature ( ), and engine emissions were used as the output parameters. The number of RBF centers was selected randomly. The network was initially trained using variable width values for the RBF units using a heuristic and then was trained by using fixed width values. Studies showed that RBFNN predicted results matched well with the experimental results over a wide range of operating conditions. Prediction accuracy for all the output parameters was above 90% in case of performance parameters and above 70% in case of emission parameters. 1. Introduction The world is presently confronted with a twin crisis of fossil fuel depletion and environmental degradation. Indiscriminate extraction and lavish consumption of fossil fuels have led to a reduction in underground-based carbon resources. The search for an alternative fuel which promises a harmonious correlation with the sustainable development, energy conservation, and management has become highly pronounced in the present context. The fuels of bio-origin like vegetable oils can provide a feasible solution to this crisis. The energy density, cetane number, and heat of vaporization of vegetable oils are comparable to diesel values. It is renewable, available everywhere, and has proved to be a cleaner fuel and more environment friendly than the fossil fuels [1–3]. Also from the literature, it is revealed that the emissions from the biodiesel engines are comparatively lesser from the engines with the petroleum-based fuels [4–6]. But the higher viscosity of vegetable oils affects the flow properties of fuel such as spray, atomization, and consequent vaporization and air fuel mixing. Heating and blending of vegetable oils may reduce the viscosity and improve the volatility of the vegetable oils, but its molecular structure remains unchanged. Literature survey revealed that converting vegetable oils into methyl esters will overcome all problems related with vegetable oils [7, 8]. However, high cost of biodiesel is the major obstacle for its commercialization. The
References
[1]
J. Huang, Y. Wang, S. Li, A. P. Roskilly, H. Yu, and H. Li, “Experimental investigation on the performance and emissions of a diesel engine fuelled with ethanol-diesel blends,” Applied Thermal Engineering, vol. 29, no. 11-12, pp. 2484–2490, 2009.
[2]
K. Sureshkumar, R. Velraj, and R. Ganesan, “Performance and exhaust emission characteristics of a CI engine fueled with Pongamia pinnata methyl ester (PPME) and its blends with diesel,” Renewable Energy, vol. 33, no. 10, pp. 2294–2302, 2008.
[3]
A. K. Agarwal and K. Rajamanoharan, “Experimental investigations of performance and emissions of Karanja oil and its blends in a single cylinder agricultural diesel engine,” Applied Energy, vol. 86, no. 1, pp. 106–112, 2009.
[4]
T. Venkateshwara Rao, G. Prabhakar Rao, and K. Hema Chandra Reddy, “Experimental investigation of pongamia, Jatropa, Neem metyl esters as biodiesel in C.I. Engine,” Jordan Journal of Mechanical and Industrial Engineering, vol. 2, no. 2, pp. 117–122, 2008.
[5]
A. P. Roskilly, S. K. Nanda, Y. D. Wang, and J. Chirkowski, “The performance and the gaseous emissions of two small marine craft diesel engines fuelled with biodiesel,” Applied Thermal Engineering, vol. 28, no. 8-9, pp. 872–880, 2008.
[6]
A. K. Hossain and P. A. Davies, “Plant oils as fuels for compression ignition engines: a technical review and life-cycle analysis,” Renewable Energy, vol. 35, no. 1, pp. 1–13, 2010.
[7]
A. K. Babu and G. Devaradjane, “Vegetable oils and their derivatives as fuel for CI engines—an overview,” SAE Technical Paper 2003-01-0767, SAE International.
[8]
A. S. Ramadhas, S. Jayaraj, and C. Muraleedharan, “Use of vegetable oils as I.C. Engine fuels—a review,” Renewable Energy, vol. 29, no. 5, pp. 727–742, 2004.
[9]
S. Zheng, M. Kates, M. A. Dubé, and D. D. McLean, “Acid-catalyzed production of biodiesel from waste frying oil,” Biomass and Bioenergy, vol. 30, no. 3, pp. 267–272, 2006.
[10]
A. V. Tomasevic and S. S. Siler-Marinkovic, “Methanolysis of used frying oil,” Fuel Processing Technology, vol. 81, no. 1, pp. 1–6, 2003.
[11]
M. Canakci and A. Necati ?zsezen, “Evaluating waste cooking oils as alternative diesel fuel,” Gazi University Journal of Science, vol. 18, no. 1, pp. 81–91, 2005.
[12]
Z. Utlu and M. S. Ko?ak, “The effect of biodiesel fuel obtained from waste frying oil on direct injection diesel engine performance and exhaust emissions,” Renewable Energy, vol. 33, no. 8, pp. 1936–1941, 2008.
[13]
M. L. Traver and R. J. Atkinson, “Neural network based diesel engine emission prediction using in cylinder combustion pressure,” SAE Technical Paper 1999-01-1532, SAE International.
[14]
D. Yuanwang, Z. Meilin, X. Dong, and C. Xiaobei, “An analysis for effect of cetane number on exhaust emissions from engine with the neural network,” Fuel, vol. 81, no. 15, pp. 1963–1970, 2002.
[15]
M. G?lcü, Y. Sekmen, P. Erduranli, and M. S. Salman, “Artificial neural-network based modeling of variable valve-timing in a spark-ignition engine,” Applied Energy, vol. 81, no. 2, pp. 187–197, 2005.
[16]
M. M. Prieto, E. Montanes, and O. Menendez, “Power plant condenser performance forecasting using a non-fully connected artificial neural network,” Energy, vol. 26, no. 1, pp. 65–79, 2001.
[17]
H. Bechtler, M. W. Browne, P. K. Bansal, and V. Kecman, “Neural networks—a new approach to model vapour-compression heat pumps,” International Journal of Energy Research, vol. 25, no. 7, pp. 591–599, 2001.
[18]
J. M. Alonso, F. Alvarruiz, J. M. Desantes, L. Hernández, V. Hernández, and G. Moltó, “Combining neural networks and genetic algorithms to predict and reduce diesel engine emissions,” IEEE Transactions on Evolutionary Computation, vol. 11, no. 1, pp. 46–55, 2007.
[19]
B. Ghobadian, H. Rahimi, A. M. Nikbakht, G. Najafi, and T. F. Yusaf, “Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network,” Renewable Energy, vol. 34, no. 4, pp. 976–982, 2009.
[20]
T. F. Yusaf, D. R. Buttsworth, K. H. Saleh, and B. F. Yousif, “CNG-diesel engine performance and exhaust emission analysis with the aid of artificial neural network,” Applied Energy, vol. 87, no. 5, pp. 1661–1669, 2010.
[21]
C. Sayin, H. M. Ertunc, M. Hosoz, I. Kilicaslan, and M. Canakci, “Performance and exhaust emissions of a gasoline engine using artificial neural network,” Applied Thermal Engineering, vol. 27, no. 1, pp. 46–54, 2007.
[22]
E. Arcaklio?lu and I. ?elikten, “A diesel engine's performance and exhaust emissions,” Applied Energy, vol. 80, no. 1, pp. 11–22, 2005.
[23]
Z. T. Liu and S. M. Fei, “Study of CNG/diesel dual fuel engine's emissions by means of RBF neural network,” Journal of Zhejiang University, vol. 5, no. 8, pp. 960–965, 2004.
[24]
R. Johnsson, “Cylinder pressure reconstruction based on complex radial basis function networks from vibration and speed signals,” Mechanical Systems and Signal Processing, vol. 20, no. 8, pp. 1923–1940, 2006.
[25]
K. K. Botros, G. Kibrya, and A. Glover, “A demonstration artificial neural-networks-based data mining for gas-turbine-driven compressor stations,” Journal of Engineering for Gas Turbines and Power, vol. 124, no. 2, pp. 284–297, 2002.
[26]
N. Roy and R. Ganguli, “Filter design using radial basis function neural network and genetic algorithm for improved operational health monitoring,” Applied Soft Computing, vol. 6, no. 2, pp. 154–169, 2006.
[27]
S. Haykin, Neural Networks, A Comprehensive Foundation, Macmillan, New York, NY, USA, 1984.
[28]
P. Srinivasa Pai, T. N. Nagabhushan, P. K. Ramakrishna Rao, et al., “Radial basis function neural networks for tool wear monitoring,” International Journal of COMADEM, vol. 5, no. 3, pp. 21–30, 2003.
[29]
P. Srinivasa Pai, Acoustic emission based tool wear monitoring using some improved neural network methodologies [Ph.D. thesis], S.J. College of Engineering, University of Mysore, Mysore, India, 2004.