全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Post-Normalization Quality Assessment Visualization of Microarray Data

DOI: 10.1002/cfg.317

Full-Text   Cite this paper   Add to My Lib

Abstract:

Post-normalization checking of microarrays rarely occurs, despite the problems that using unreliable data for inference can cause. This paper considers a number of different ways to check microarrays after normalization for a variety of potential problems. Four types of problem with microarray data that these checks can identify are: clerical mistakes, array-wide hybridization problems, problems with normalization and mishandling problems. Any of these can seriously affect the results of any analysis. The three main techniques used to identify these problems are dimension reduction techniques, false array plots and correlograms. None of the techniques are computationally very intensive and all can be carried out in the R statistical package. Once discovered, problems can either be rectified or excluded from the data.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133