|
Thymic function and T cell parameters in a natural human experimental model of seasonal infectious diseases and nutritional burdenAbstract: We hypothesised that season of birth effects on thymic function and T cell immunity would be detectable in young adults since Kaplan-Meier survival curves indicated this to be the time of greatest mortality divergence. T cell subset analyses by flow-cytometry, sjTRECs, TCRVβ repertoire and telomere length by PCR, were performed on samples from 60 males (18-23 y) selected to represent births in the hungry/high infection and harvest/low infectionTotal lymphocyte counts were normal and did not differ by birth season. CD3+ and CD4+ but not CD8+ counts were lower for those born during the hungry/high infection season. CD8+ telomere length also tended to be shorter. Overall, CD8+ TCRVβ repertoire skewing was observed with 'public' expressions and deletions seen in TCRVβ12/22 and TCRVβ24, respectively but no apparent effect of birth season.We conclude that, although thymic function was unchanged, the CD4+ and CD3+ counts, and CD8+ telomere length results suggested that aspects of adult T cell immunity were under the influence of early life stressors. The endemicity of CMV and HBV suggested that chronic infections may modulate immunity through T cell repertoire development. The overall implications being that, this population is at an elevated risk of premature immunosenescence possibly driven by a combination of nutritional and infectious burden.A large retrospective community-based study using demographic data generated over a 50 year period from 3102 individuals born in alternating seasons of relative food availability and low infectious diseases burden (harvest/low infection; January to June) and deprivation and high infectious diseases (hungry/high infection season; July to December), showed that those born in the hungry/high infection were 10-times more likely to die from infectious diseases as young adults[1,2]. By splitting the year in half, seasonal fluctuations are taken into account, ensuring that periods of typical hungry/high infection and harvest/low infection
|