|
Polarized light based scheme to monitor column performance in a continuous foam fractionation columnAbstract: Three different superficial gas velocities (6.9, 7.5, and 10.6 cm/min) and four different pH values (4.8, 5.5, 6.5, and 7.5) are tested for the foam fractionation of a dilute solution of bovine serum albumin (0.1 mg/ml). As a result, at scattering angle of 125° the magnitude of S11+S12 is higher as the pH increases. When the bubble sizes are small with a larger liquid content, the foam is strongly back scattering resulting in lower values of S11+S12 (at 125°) at pH = 4.8. The light scattering data and the enrichment values are measured over a period of 90 minutes and correlated using a linear model. The predictive power of the model was found to be statistically significant.The time average S11+S12 shows a direct proportionality with the enrichment value, indicating that polarized light should be a valuable technique for monitoring foam fractionation columns. Additional knowledge of the nature of dependence between foam properties and S11+S12 combined with models relating the enrichment to the bubble size and liquid hold up is needed to develop an accurate diagnostics tool for monitoring enrichment utilizing S11+S12 measurements.Foam fractionation is a separation technique in which the surface active solutes are concentrated from very dilute solutions by preferential adsorption at the gas-liquid interface as a gas is sparged through the solution. The process is very similar to froth flotation which has been a very common practice in the mining industry for the concentration of mineral ores [1] and is sometimes referred to as foam flotation [2]. Schütz [3] was the first to use foam fractionation to concentrate cholic acid from its mixture with sodium cholate. Later in 1959, Schnepf and Gaden [4] used this process to concentrate bovine serum albumin (BSA) from a dilute aqueous solution. Since then a large number of investigations have been published on foam-based protein/enzyme separation and/or purification [5-18].Protein adsorption correlates with surface activity a
|