全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Impact of Potential Land Cover Misclassification on MODIS Leaf Area Index (LAI) Estimation: A Statistical Perspective

DOI: 10.3390/rs5020830

Keywords: leaf area index (LAI), uncertainty, land cover, biome type, subpixel mixture, biome misclassification, MODIS

Full-Text   Cite this paper   Add to My Lib

Abstract:

Understanding the impact of vegetation mixture and misclassification on leaf area index (LAI) estimation is crucial for algorithm development and the application community. Using the MODIS standard land cover and LAI products, global LAI climatologies and statistics were obtained for both pure and mixed pixels to evaluate the effects of biome mixture on LAI estimation. Misclassification between crops and shrubs does not generally translate into large LAI errors (<0.37 or 27.0%), partly due to their relatively lower LAI values. Biome misclassification generally leads to an LAI overestimation for savanna, but an underestimation for forests. The largest errors caused by misclassification are also found for savanna (0.51), followed by evergreen needleleaf forests (0.44) and broadleaf forests (~0.31). Comparison with MODIS uncertainty indicators show that biome misclassification is a major factor contributing to LAI uncertainties for savanna, while for forests, the main uncertainties may be introduced by algorithm deficits, especially in summer. The LAI climatologies for pure pixels are recommended for land surface modeling studies. Future studies should focus on improving the biome classification for savanna systems and refinement of the retrieval algorithms for forest biomes.

References

[1]  Global Climate Observing System (GCOS). Systematic Observation Requirements for Satellite-Based Products for Climate, 2011 Update, Supplemental Details to the Satellite-Based Component of the Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC (2010 Update), 2011, p. 138. Available online: http://www.wmo.int/pages/prog/gcos/Publications/gcos-154.pdf (accessed on 13 November 2012).
[2]  Huang, D.; Knyazikhin, Y.; Wang, W.; Deering, D.W.; Stenberg, P.; Shabanov, N.; Tan, B.; Myneni, R.B. Stochastic transport theory for investigating the three-dimensional canopy structure from space measurements. Remote Sens. Environ 2008, 112, 35–50.
[3]  Myneni, R.B.; Hoffman, S.; Knyazikhin, Y.; Privette, J.L.; Glassy, J.; Tian, Y.; Wang, Y.; Song, X.; Zhang, Y.; Smith, G.R.; et al. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens. Environ 2002, 83, 214–231.
[4]  Baret, F.; Hagolle, O.; Geiger, B.; Bicheron, P.; Miras, B.; Huc, M.; Berthelot, B.; Ni?o, F.; Weiss, M.; Samain, O.; et al. LAI, fPAR, and fCover CYCLOPES global products derived from VEGETATION Part 1: Principles of the algorithm. Remote Sens. Environ 2007, 110, 275–286.
[5]  Deng, F.; Chen, J.M.; Plummer, S.; Chen, M.; Pisek, J. Algorithm for global leaf area index retrieval using satellite imagery. IEEE Trans. Geosci. Remote Sens 2006, 44, 2219–2229.
[6]  Plummer, S.; Arino, O.; Simon, M.; Steffen, W. Establishing a earth observation product service for the terrestrial carbon community: The globcarbon initiative. Mitig. Adapt. Strat. Gl 2006, 11, 97–111.
[7]  Morisette, J.T.; Baret, F.; Privette, J.L.; Myneni, R.B.; Nickeson, J.E.; Garrigues, S.; Shabanov, N.V.; Weiss, M.; Fernandes, R.A.; Leblanc, S.G.; et al. Validation of global moderate-resolution LAI products: a framework proposed within the CEOS land product validation subgroup. IEEE Trans. Geosci. Remote Sens 2006, 44, 1804–1817.
[8]  Fang, H.; Wei, S.; Jiang, C.; Scipal, K. Theoretical uncertainty analysis of global MODIS, CYCLOPES and GLOBCARBON LAI products using a triple collocation method. Remote Sens. Environ 2012, 124, 610–621.
[9]  Knyazikhin, Y.; Glassy, J.; Privette, J.L.; Tian, Y.; Lotsch, A.; Zhang, Y.; Wang, Y.; Morisette, J.T.; Votava, P.; Myneni, R.B.; et al. MODIS Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation Absorbed by Vegetation (FPAR) Product (MOD15) Algorithm Theoretical Basis Document, 1999, p. 126. Available online: http://modis.gsfc.nasa.gov/data/atbd/land_atbd.php (accessed on 13 November 2012).
[10]  Pinty, B.; Andredakis, I.; Clerici, M.; Kaminski, T.; Taberner, M.; Verstraete, M.M.; Gobron, N.; Plummer, S.; Widlowski, J.L. Exploiting the MODIS albedos with the Two-stream Inversion Package (JRC-TIP): 1. Effective leaf area index, vegetation, and soil properties. J. Geophys. Res 2011, 116, D09105.
[11]  Gemmell, F.; Varjo, J.; Strandstrom, M.; Kuusk, A. Comparison of measured boreal forest characteristics with estimates from TM data and limited ancillary information using reflectance model inversion. Remote Sens. Environ 2002, 81, 365–377.
[12]  Wang, Y.; Tian, Y.; Zhang, Y.; El-Saleous, N.; Knyazikhin, Y.; Vermote, E.; Myneni, R.B. Investigation of product accuracy as a function of input and model uncertainties: case study with SeaWiFS and MODIS LAI/FPAR algorithm. Remote Sens. Environ 2001, 78, 296–311.
[13]  Yang, W.; Tan, B.; Huang, D.; Rautiainen, M.; Shabanov, N.V.; Wang, Y.; Privette, J.L.; Huemmrich, K.F.; Fensholt, R.; Sandholt, I.; et al. MODIS leaf area index products: from validation to algorithm improvement. IEEE Trans. Geosci. Remote Sens 2006, 44, 1885–1898.
[14]  Vermote, E.F.; El Saleous, N.Z.; Justice, C.O. Atmospheric correction of MODIS data in the visible to middle infrared: First results. Remote Sens. Environ 2002, 83, 97–111.
[15]  DeFries, R.S.; Los, S.O. Implications of land-cover misclassification for parameter estimates in global land-surface models: An example from the simple biosphere model (SiB2). Photogramm. Eng. Remote Sensing 1999, 65, 1083–1088.
[16]  Gonsamo, A.; Chen, J.M. Evaluation of the GLC2000 and NALC2005 land cover products for LAI retrieval over Canada. Can. J. Remote Sens 2011, 37, 302–313.
[17]  Masson, V.; Champeaux, J.L.; Chauvin, F.; Meriguet, C.; Lacaze, R. A global database of land surface parameters at 1-km resolution in meteorological and climate models. J. Clim 2003, 16, 1261–1282.
[18]  Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ 2010, 114, 168–182.
[19]  Herold, M.; Mayaux, P.; Woodcock, C.E.; Baccini, A.; Schmullius, C. Some challenges in global land cover mapping: An assessment of agreement and accuracy in existing 1 km datasets. Remote Sens. Environ 2008, 112, 2538–2556.
[20]  Fang, H.; Liang, S. A hybrid inversion method for mapping leaf area index from MODIS data: Experiments and application to broadleaf and needleleaf canopies. Remote Sens. Environ 2005, 94, 405–424.
[21]  Hu, J.; Martonchik, J.V.; Diner, D.J.; Knyazikhin, Y.; Myneni, R.B.; Tan, B.; Shabanov, N.; Crean, K.A. Performance of the MISR LAI and FPAR algorithm: A case study in Africa. Remote Sens. Environ 2003, 88, 324–340.
[22]  Tian, Y.; Zhang, Y.; Knyazikhin, Y.; Myneni, R.B.; Glassy, J.M.; Dedieu, G.; Running, S.W. Prototyping of MODIS LAI and FPAR algorithm with LASUR and Landsat data. IEEE Trans. Geosci. Remote Sens 2000, 38, 2387–2401.
[23]  Knyazikhin, Y.; Martonchik, J.V.; Diner, D.J.; Myneni, R.B.; Verstraete, M.; Pinty, B.; Gobron, N. Estimation of vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MISR data. J. Geophys. Res 1998, 103, 32239–32256.
[24]  Knyazikhin, Y.; Martonchik, J.V.; Myneni, R.B.; Dine, D.J.; Running, S.W. Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS and MISR data. J. Geophys. Res 1998, 103, 32257–23276.
[25]  Friedl, M.A.; McIver, D.K.; Hodges, J.C.F.; Zhang, X.Y.; Muchoney, D.; Strahler, A.H.; Woodcock, C.E.; Gopal, S.; Schneider, A.; Cooper, A. Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ 2002, 83, 287–302.
[26]  Kaptue Tchuente, A.T.; Roujean, J.-L.; Faroux, S. ECOCLIMAP-II: An ecosystem classification and land surface parameters database of Western Africa at 1 km resolution for the African Monsoon Multidisciplinary Analysis (AMMA) project. Remote Sens. Environ 2010, 114, 961–976.
[27]  Pandya, M.R.; Singh, R.P.; Chaudhari, K.N.; Bairagi, G.D.; Sharma, R.; Dadhwal, V.K.; Parihar, J.S. Leaf area index retrieval using IRS LISS-III sensor data and validation of the MODIS LAI product over central India. IEEE Trans. Geosci. Remote Sens 2006, 44, 1858–1865.
[28]  Tan, B.; Hu, J.; Zhang, P.; Huang, D.; Shabanov, N.; Weiss, M.; Knyazikhin, Y.; Myneni, R.B. Validation of MOderate Resolution Imaging Spectroradiometer leaf area index product in croplands of Alpilles, France. J. Geophys. Res. 2005, 110, doi:10.1029/2004JD004860.
[29]  Yang, P.; Shibasaki, R.; Wu, W.; Zhou, Q.; Chen, Z.; Zha, Y.; Shi, Y.; Tang, H. Evaluation of MODIS land cover and LAI products in cropland of North China Plain using in situ measurements and Landsat TM images. IEEE Trans. Geosci. Remote Sens 2007, 45, 3087–3097.
[30]  Lotsch, A.; Tian, Y.; Friedl, M.A.; Myneni, R.B. Land cover mapping in support of LAI and FPAR retrievals from EOS-MODIS and MISR: classification methods and sensitivities to errors. Int. J. Remote Sens 2003, 24, 1997–2016.
[31]  Tian, Y.; Woodcock, C.E.; Wang, Y.; Privette, J.L.; Shabanov, N.V.; Zhou, L.; Zhang, Y.; Buermann, W.; Dong, J.; Veikkanen, B.; et al. Multiscale analysis and validation of the MODIS LAI product I. Uncertainty assessment. Remote Sens. Environ 2002, 83, 414–430.
[32]  Hill, M.J.; Senarath, U.; Lee, A.; Zeppel, M.; Nightingale, J.M.; Williams, R.D.J.; McVicar, T.R. Assessment of the MODIS LAI product for Australian ecosystems. Remote Sens. Environ 2006, 101, 495–518.
[33]  Hanan, N.P.; Hill, M.J. Savannas in a Changing Earth System: The NASA Terrestrial Ecology Tree-Grass Project, 2011, p. 53. Available online: http://cce.nasa.gov/terrestrial_ecology/scoping.html (accessed on 1 March 2012).
[34]  Myneni, R.; Knyazikhin, Y.; Shabanov, N. Leaf Area Index and Fraction of Absorbed PAR Products from Terra and Aqua MODIS Sensors: Analysis, Validation, and Refinement. In Land Remote Sensing and Global Environmental Change: NASA’s Earth Observing System and the Science of ASTER and MODIS, 1st ed.; Ramachandran, B., Justice, C.O., Abrams, M.J., Eds.; Springer: New York, NY, USA, 2011; pp. 603–633.
[35]  Bach, H.; Mauser, W. Methods and examples for remote sensing data assimilation in land surface process modeling. IEEE Trans. Geosci. Remote Sens 2003, 41, 1629–1637.
[36]  Sellers, P.J.; Mintz, Y.; Sud, Y.C.; Dalcher, A. A simple biosphere model (SiB) for use within general circulation models. J. Atmops. Sci 1986, 43, 505–531.
[37]  Bonan, G.B.; Levis, S.; Kergoat, L.; Oleson, K.W. Landscapes as patches of plant functional types: An integrating concept for climate and ecosystem models. Glob. Biogeochem. Cy 2002, 16, 1–25.
[38]  El Maayar, M.; Chen, J.M. Spatial scaling of evapotranspiration as affected by heterogeneities in vegetation, topography, and soil texture. Remote Sens. Environ 2006, 102, 33–51.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133